* Describe kube-apiserver load balancing on each platform
* Describe HTTP/S Ingress load balancing on each platform
* Describe TCP/UDP load balancing apps on each platform
(some clouds don't support UDP)
* Describe firewall customization (e.g. for TCP/UDP apps)
* Update IPv6 status for each platform
* For Fedora CoreOS, only HTTPS downloads are available.
Any iPXE firmware must be compiled to support TLS fetching.
* For Container Linux, using public kernel/initramfs images
defaults to using HTTPS, but can be set to HTTP for iPXE
firmware that hasn't been custom compiled to support TLS
* Add all Azure controllers to the apiserver load balancer
backend address pool
* Previously, kube-apiserver availability relied on the 0th
controller being up. Multi-controller was just providing etcd
data redundancy
* Intended as part of #504 improvement
* Single controller clusters only require one controller
instance group (previously created zone-many)
* Multi-controller clusters must "wrap" controllers over
zonal heterogeneous instance groups. For example, 5
controllers over 3 zones (no change)
* Kubelets can hit the ContainerManager Delegation issue and fail
to start (noted in 72c94f1c6). Its unclear why this occurs only
to some Kubelets (possibly an ordering concern)
* QoS cgroups remain a goal
* When a controller node is affected, bootstrapping fails, which
makes other development harder. Temporarily disable QoS on
controllers only. This should safeguard bring-up and hopefully
still allow the issue to occur on some workers for debugging
* Use the xz compressed images published by Fedora testing,
instead of gzippped tarballs. This is possible because the
initramfs now supports xz and coreos-installer 0.8 was added
* Separate bios and uefi raw images are no longer needed
* Use the newly minted "Fedora CoreOS Preview" AMI
* Remove iscsi, kubelet.path activation, and kubeconfig
distribution
* As usual, bare-metal efforts make cloud provider ports
much easier
* First semi-working cluster using 30.307-metal-bios
* Enable CPU, Memory, and BlockIO accounting
* Mount /var/lib/kubelet with `rshare` so mounted tmpfs Secrets
(e.g. serviceaccount's) are visible within appropriate containers
* SELinux relabel /etc/kubernetes so install-cni init containers
can write the CNI config to the host /etc/kubernetes/net.d
* SELinux relabel /var/lib/kubelet so ConfigMaps can be read
by containers
* SELinux relabel /opt/cni/bin so install-cni containers can
write CNI binaries to the host
* Set net.ipv4_conf.all.rp_filter to 1 (not 2, loose mode) to
satisfy Calico requirement
* Enable the QoS cgroup hierarchy for pod workloads (kubepods,
burstable, besteffort). Mount /sys/fs/cgroup and
/sys/fs/cgroup/systemd into the Kubelet. Its still rather racy
whether Kubelet will fail on ContainerManager Delegation
* Allow updating terraform-provider-ct to any release
beyond v0.3.2, but below v1.0. This relaxes the prior
constraint that allowed only v0.3.y provider versions
* Run kube-apiserver as a non-root user (nobody). User
no longer needs to bind low number ports.
* On most platforms, the kube-apiserver load balancer listens
on 6443 and fronts controllers with kube-apiserver pods using
port 6443. Google Cloud TCP proxy load balancers cannot listen
on 6443. However, GCP's load balancer can be made to listen on
443, while kube-apiserver uses 6443 across all platforms.
* Fix a GCP errata item https://github.com/poseidon/typhoon/wiki/Errata
* Removal of a Google Cloud cluster often required 2 runs of
`terraform apply` because network resource deletes timeout
after 4m. Raise the network deletion timeout to 6m to
ensure apply only needs to be run once to remove a cluster
* google_compute_backend_services use nested blocks to define
backends (instance groups heterogeneous controllers)
* Use Terraform v0.12.x dynamic blocks so the apiserver backend
service can refer to (up to zone-many) controller instance groups
* Previously, with Terraform v0.11.x, the apiserver backend service
had to list a fixed set of backends to span controller nodes across
zones in multi-controller setups. 3 backends were used because each
GCP region offered at least 3 zones. Single-controller clusters had
the cosmetic ugliness of unused instance groups
* Allow controllers to span more than 3 zones if avilable in a
region (e.g. currently only us-central1, with 4 zones)
Related:
* https://www.terraform.io/docs/providers/google/r/compute_backend_service.html
* https://www.terraform.io/docs/configuration/expressions.html#dynamic-blocks
* Drop string interpolation in Google Cloud A records
shown in Nginx ingress addon docs
* Retain string interpolation syntax for CNAME records
since Google Cloud DNS expects records to end in "."
(some clouds add it automatically)
* For Container Linux or Flatcar Linux alpha/beta/stable,
continue using the `cgroupfs` driver
* For Fedora Atomic, continue using the `systemd` driver
* For Flatcar Linux Edge, use the `systemd` driver