16 KiB
Bare-Metal
In this tutorial, we'll network boot and provision a Kubernetes v1.8.6 cluster on bare-metal.
First, we'll deploy a Matchbox service and setup a network boot environment. Then, we'll declare a Kubernetes cluster in Terraform using the Typhoon Terraform module and power on machines. On PXE boot, machines will install Container Linux to disk, reboot into the disk install, and provision themselves as Kubernetes controllers or workers.
Controllers are provisioned as etcd peers and run etcd-member
(etcd3) and kubelet
. Workers are provisioned to run a kubelet
. A one-time bootkube bootstrap schedules an apiserver
, scheduler
, controller-manager
, and kube-dns
on controllers and runs kube-proxy
and calico
or flannel
on each node. A generated kubeconfig
provides kubectl
access to the cluster.
Requirements
- Machines with 2GB RAM, 30GB disk, PXE-enabled NIC, IPMI
- PXE-enabled network boot environment
- Matchbox v0.6+ deployment with API enabled
- Matchbox credentials
client.crt
,client.key
,ca.crt
- Terraform v0.10.x and terraform-provider-matchbox installed locally
Machines
Collect a MAC address from each machine. For machines with multiple PXE-enabled NICs, pick one of the MAC addresses. MAC addresses will be used to match machines to profiles during network boot.
- 52:54:00:a1:9c:ae (node1)
- 52:54:00:b2:2f:86 (node2)
- 52:54:00:c3:61:77 (node3)
Configure each machine to boot from the disk 1 through IPMI or the BIOS menu.
ipmitool -H node1 -U USER -P PASS chassis bootdev disk options=persistent
During provisioning, you'll explicitly set the boot device to pxe
for the next boot only. Machines will install (overwrite) the operating system to disk on PXE boot and reboot into the disk install.
!!! tip ""
Ask your hardware vendor to provide MACs and preconfigure IPMI, if possible. With it, you can rack new servers, terraform apply
with new info, and power on machines that network boot and provision into clusters.
DNS
Create a DNS A (or AAAA) record for each node's default interface. Create a record that resolves to each controller node (or re-use the node record if there's one controller).
- node1.example.com (node1)
- node2.example.com (node2)
- node3.example.com (node3)
- myk8s.example.com (node1)
Cluster nodes will be configured to refer to the control plane and themselves by these fully qualified names and they'll be used in generated TLS certificates.
Matchbox
Matchbox is an open-source app that matches network-booted bare-metal machines (based on labels like MAC, UUID, etc.) to profiles to automate cluster provisioning.
Install Matchbox on a Kubernetes cluster or dedicated server.
- Installing on Kubernetes (recommended)
- Installing on a server
!!! tip Deploy Matchbox as service that can be accessed by all of your bare-metal machines globally. This provides a single endpoint to use Terraform to manage bare-metal clusters at different sites. Typhoon will never include secrets in provisioning user-data so you may even deploy matchbox publicly.
Matchbox provides a TLS client-authenticated API that clients, like Terraform, can use to manage machine matching and profiles. Think of it like a cloud provider API, but for creating bare-metal instances.
Generate TLS client credentials. Save the ca.crt
, client.crt
, and client.key
where they can be referenced in Terraform configs.
mv ca.crt client.crt client.key ~/.config/matchbox/
Verify the matchbox read-only HTTP endpoints are accessible (port is configurable).
$ curl http://matchbox.example.com:8080
matchbox
Verify your TLS client certificate and key can be used to access the Matchbox API (port is configurable).
$ openssl s_client -connect matchbox.example.com:8081 \
-CAfile ~/.config/matchbox/ca.crt \
-cert ~/.config/matchbox/client.crt \
-key ~/.config/matchbox/client.key
PXE Environment
Create a iPXE-enabled network boot environment. Configure PXE clients to chainload iPXE and instruct iPXE clients to chainload from your Matchbox service's /boot.ipxe
endpoint.
For networks already supporting iPXE clients, you can add a default.ipxe
config.
# /var/www/html/ipxe/default.ipxe
chain http://matchbox.foo:8080/boot.ipxe
For networks with Ubiquiti Routers, you can configure the router itself to chainload machines to iPXE and Matchbox.
For a small lab, you may wish to checkout the quay.io/coreos/dnsmasq container image and copy-paste examples.
Read about the many ways to setup a compliant iPXE-enabled network. There is quite a bit of flexibility:
- Continue using existing DHCP, TFTP, or DNS services
- Configure specific machines, subnets, or architectures to chainload from Matchbox
- Place Matchbox behind a menu entry (timeout and default to Matchbox)
!!! note "" TFTP chainloading to modern boot firmware, like iPXE, avoids issues with old NICs and allows faster transfer protocols like HTTP to be used.
Terraform Setup
Install Terraform v0.10.x on your system.
$ terraform version
Terraform v0.10.7
Add the terraform-provider-matchbox plugin binary for your system.
wget https://github.com/coreos/terraform-provider-matchbox/releases/download/v0.2.2/terraform-provider-matchbox-v0.2.2-linux-amd64.tar.gz
tar xzf terraform-provider-matchbox-v0.2.2-linux-amd64.tar.gz
sudo mv terraform-provider-matchbox-v0.2.2-linux-amd64/terraform-provider-matchbox /usr/local/bin/
Add the plugin to your ~/.terraformrc
.
providers {
matchbox = "/usr/local/bin/terraform-provider-matchbox"
}
Read concepts to learn about Terraform, modules, and organizing resources. Change to your infrastructure repository (e.g. infra
).
cd infra/clusters
Provider
Configure the Matchbox provider to use your Matchbox API endpoint and client certificate in a providers.tf
file.
provider "matchbox" {
endpoint = "matchbox.example.com:8081"
client_cert = "${file("~/.config/matchbox/client.crt")}"
client_key = "${file("~/.config/matchbox/client.key")}"
ca = "${file("~/.config/matchbox/ca.crt")}"
}
Cluster
Define a Kubernetes cluster using the module bare-metal/container-linux/kubernetes
.
module "bare-metal-mercury" {
source = "git::https://github.com/poseidon/typhoon//bare-metal/container-linux/kubernetes"
# install
matchbox_http_endpoint = "http://matchbox.example.com"
container_linux_channel = "stable"
container_linux_version = "1576.4.0"
ssh_authorized_key = "ssh-rsa AAAAB3Nz..."
# cluster
cluster_name = "mercury"
k8s_domain_name = "node1.example.com"
# machines
controller_names = ["node1"]
controller_macs = ["52:54:00:a1:9c:ae"]
controller_domains = ["node1.example.com"]
worker_names = [
"node2",
"node3",
]
worker_macs = [
"52:54:00:b2:2f:86",
"52:54:00:c3:61:77",
]
worker_domains = [
"node2.example.com",
"node3.example.com",
]
# output assets dir
asset_dir = "/home/user/.secrets/clusters/mercury"
}
Reference the variables docs or the variables.tf source.
ssh-agent
Initial bootstrapping requires bootkube.service
be started on one controller node. Terraform uses ssh-agent
to automate this step. Add your SSH private key to ssh-agent
.
ssh-add ~/.ssh/id_rsa
ssh-add -L
!!! warning
terraform apply
will hang connecting to a controller if ssh-agent
does not contain the SSH key.
Apply
Initialize the config directory if this is the first use with Terraform.
terraform init
Get or update Terraform modules.
$ terraform get # downloads missing modules
$ terraform get --update # updates all modules
Get: git::https://github.com/poseidon/typhoon (update)
Get: git::https://github.com/poseidon/bootkube-terraform.git?ref=v0.9.1 (update)
Plan the resources to be created.
$ terraform plan
Plan: 55 to add, 0 to change, 0 to destroy.
Apply the changes. Terraform will generate bootkube assets to asset_dir
and create Matchbox profiles (e.g. controller, worker) and matching rules via the Matchbox API.
module.bare-metal-mercury.null_resource.copy-kubeconfig.0: Provisioning with 'file'...
module.bare-metal-mercury.null_resource.copy-etcd-secrets.0: Provisioning with 'file'...
module.bare-metal-mercury.null_resource.copy-kubeconfig.0: Still creating... (10s elapsed)
module.bare-metal-mercury.null_resource.copy-etcd-secrets.0: Still creating... (10s elapsed)
...
Apply will then loop until it can successfully copy credentials to each machine and start the one-time Kubernetes bootstrap service. Proceed to the next step while this loops.
Power
Power on each machine with the boot device set to pxe
for the next boot only.
ipmitool -H node1.example.com -U USER -P PASS chassis bootdev pxe
ipmitool -H node1.example.com -U USER -P PASS power on
Machines will network boot, install Container Linux to disk, reboot into the disk install, and provision themselves as controllers or workers.
!!! tip "" If this is the first test of your PXE-enabled network boot environment, watch the SOL console of a machine to spot any misconfigurations.
Bootstrap
Wait for the bootkube-start
step to finish bootstrapping the Kubernetes control plane. This may take 5-15 minutes depending on your network.
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m10s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m20s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m30s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m40s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Creation complete (ID: 5441741360626669024)
Apply complete! Resources: 55 added, 0 changed, 0 destroyed.
To watch the bootstrap process in detail, SSH to the first controller and journal the logs.
$ ssh node1.example.com
$ journalctl -f -u bootkube
bootkube[5]: Pod Status: pod-checkpointer Running
bootkube[5]: Pod Status: kube-apiserver Running
bootkube[5]: Pod Status: kube-scheduler Running
bootkube[5]: Pod Status: kube-controller-manager Running
bootkube[5]: All self-hosted control plane components successfully started
bootkube[5]: Tearing down temporary bootstrap control plane...
Verify
Install kubectl on your system. Use the generated kubeconfig
credentials to access the Kubernetes cluster and list nodes.
$ KUBECONFIG=/home/user/.secrets/clusters/mercury/auth/kubeconfig
$ kubectl get nodes
NAME STATUS AGE VERSION
node1.example.com Ready 11m v1.8.6
node2.example.com Ready 11m v1.8.6
node3.example.com Ready 11m v1.8.6
List the pods.
$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system calico-node-6qp7f 2/2 Running 1 11m
kube-system calico-node-gnjrm 2/2 Running 0 11m
kube-system calico-node-llbgt 2/2 Running 0 11m
kube-system kube-apiserver-7336w 1/1 Running 0 11m
kube-system kube-controller-manager-3271970485-b9chx 1/1 Running 0 11m
kube-system kube-controller-manager-3271970485-v30js 1/1 Running 1 11m
kube-system kube-dns-1187388186-mx9rt 3/3 Running 0 11m
kube-system kube-etcd-network-checkpointer-q24f7 1/1 Running 0 11m
kube-system kube-proxy-50sd4 1/1 Running 0 11m
kube-system kube-proxy-bczhp 1/1 Running 0 11m
kube-system kube-proxy-mp2fw 1/1 Running 0 11m
kube-system kube-scheduler-3895335239-fd3l7 1/1 Running 1 11m
kube-system kube-scheduler-3895335239-hfjv0 1/1 Running 0 11m
kube-system pod-checkpointer-wf65d 1/1 Running 0 11m
kube-system pod-checkpointer-wf65d-node1.example.com 1/1 Running 0 11m
Going Further
Learn about version pinning, maintenance, and addons.
!!! note
On Container Linux clusters, install the container-linux-update-operator
addon to coordinate reboots and drains when nodes auto-update. Otherwise, updates may not be applied until the next reboot.
Variables
Required
Name | Description | Example |
---|---|---|
matchbox_http_endpoint | Matchbox HTTP read-only endpoint | http://matchbox.example.com:8080 |
container_linux_channel | Container Linux channel | stable, beta, alpha |
container_linux_version | Container Linux version of the kernel/initrd to PXE and the image to install | 1576.4.0 |
cluster_name | Cluster name | mercury |
k8s_domain_name | FQDN resolving to the controller(s) nodes. Workers and kubectl will communicate with this endpoint | "myk8s.example.com" |
ssh_authorized_key | SSH public key for ~/.ssh/authorized_keys | "ssh-rsa AAAAB3Nz..." |
controller_names | Ordered list of controller short names | ["node1"] |
controller_macs | Ordered list of controller identifying MAC addresses | ["52:54:00:a1:9c:ae"] |
controller_domains | Ordered list of controller FQDNs | ["node1.example.com"] |
worker_names | Ordered list of worker short names | ["node2", "node3"] |
worker_macs | Ordered list of worker identifying MAC addresses | ["52:54:00:b2:2f:86", "52:54:00:c3:61:77"] |
worker_domains | Ordered list of worker FQDNs | ["node2.example.com", "node3.example.com"] |
asset_dir | Path to a directory where generated assets should be placed (contains secrets) | "/home/user/.secrets/clusters/mercury" |
Optional
Name | Description | Default | Example |
---|---|---|---|
cached_install | Whether machines should PXE boot and install from the Matchbox /assets cache. Admin MUST have downloaded Container Linux images into the cache to use this |
false | true |
install_disk | Disk device where Container Linux should be installed | "/dev/sda" | "/dev/sdb" |
container_linux_oem | Specify alternative OEM image ids for the disk install | "" | "vmware_raw", "xen" |
networking | Choice of networking provider | "calico" | "calico" or "flannel" |
network_mtu | CNI interface MTU (calico-only) | 1480 | - |
pod_cidr | CIDR range to assign to Kubernetes pods | "10.2.0.0/16" | "10.22.0.0/16" |
service_cidr | CIDR range to assign to Kubernetes services | "10.3.0.0/16" | "10.3.0.0/24" |
cluster_domain_suffix | FQDN suffix for Kubernetes services answered by kube-dns. | "cluster.local" | "k8s.example.com" |
kernel_args | Additional kernel args to provide at PXE boot | [] | "kvm-intel.nested=1" |
-
Configuring "diskless" workers that always PXE boot is possible, but not in the scope of this tutorial. ↩︎