mirror of
https://github.com/puppetmaster/typhoon.git
synced 2025-01-01 06:59:32 +01:00
253 lines
9.8 KiB
Markdown
253 lines
9.8 KiB
Markdown
# Azure
|
|
|
|
In this tutorial, we'll create a Kubernetes v1.28.3 cluster on Azure with Flatcar Linux.
|
|
|
|
We'll declare a Kubernetes cluster using the Typhoon Terraform module. Then apply the changes to create a resource group, virtual network, subnets, security groups, controller availability set, worker scale set, load balancer, and TLS assets.
|
|
|
|
Controller hosts are provisioned to run an `etcd-member` peer and a `kubelet` service. Worker hosts run a `kubelet` service. Controller nodes run `kube-apiserver`, `kube-scheduler`, `kube-controller-manager`, and `coredns`, while `kube-proxy` and `calico` (or `flannel`) run on every node. A generated `kubeconfig` provides `kubectl` access to the cluster.
|
|
|
|
## Requirements
|
|
|
|
* Azure account
|
|
* Azure DNS Zone (registered Domain Name or delegated subdomain)
|
|
* Terraform v0.13.0+
|
|
|
|
## Terraform Setup
|
|
|
|
Install [Terraform](https://www.terraform.io/downloads.html) v0.13.0+ on your system.
|
|
|
|
```sh
|
|
$ terraform version
|
|
Terraform v1.0.0
|
|
```
|
|
|
|
Read [concepts](/architecture/concepts/) to learn about Terraform, modules, and organizing resources. Change to your infrastructure repository (e.g. `infra`).
|
|
|
|
```
|
|
cd infra/clusters
|
|
```
|
|
|
|
## Provider
|
|
|
|
[Install](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest) the Azure `az` command line tool to [authenticate with Azure](https://www.terraform.io/docs/providers/azurerm/authenticating_via_azure_cli.html).
|
|
|
|
```
|
|
az login
|
|
```
|
|
|
|
Configure the Azure provider in a `providers.tf` file.
|
|
|
|
```tf
|
|
provider "azurerm" {
|
|
features {}
|
|
}
|
|
|
|
provider "ct" {}
|
|
|
|
terraform {
|
|
required_providers {
|
|
ct = {
|
|
source = "poseidon/ct"
|
|
version = "0.11.0"
|
|
}
|
|
azurerm = {
|
|
source = "hashicorp/azurerm"
|
|
version = "3.50.0"
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
Additional configuration options are described in the `azurerm` provider [docs](https://www.terraform.io/docs/providers/azurerm/).
|
|
|
|
## Flatcar Linux Images
|
|
|
|
Flatcar Linux publishes images to the Azure Marketplace and requires accepting terms.
|
|
|
|
```
|
|
az vm image terms accept --publish kinvolk --offer flatcar-container-linux-free --plan stable
|
|
az vm image terms accept --publish kinvolk --offer flatcar-container-linux-free --plan stable-gen2
|
|
```
|
|
|
|
## Cluster
|
|
|
|
Define a Kubernetes cluster using the module `azure/flatcar-linux/kubernetes`.
|
|
|
|
```tf
|
|
module "ramius" {
|
|
source = "git::https://github.com/poseidon/typhoon//azure/flatcar-linux/kubernetes?ref=v1.28.3"
|
|
|
|
# Azure
|
|
cluster_name = "ramius"
|
|
region = "centralus"
|
|
dns_zone = "azure.example.com"
|
|
dns_zone_group = "example-group"
|
|
|
|
# configuration
|
|
ssh_authorized_key = "ssh-rsa AAAAB3Nz..."
|
|
|
|
# optional
|
|
worker_count = 2
|
|
host_cidr = "10.0.0.0/20"
|
|
}
|
|
```
|
|
|
|
Reference the [variables docs](#variables) or the [variables.tf](https://github.com/poseidon/typhoon/blob/master/azure/flatcar-linux/kubernetes/variables.tf) source.
|
|
|
|
## ssh-agent
|
|
|
|
Initial bootstrapping requires `bootstrap.service` be started on one controller node. Terraform uses `ssh-agent` to automate this step. Add your SSH private key to `ssh-agent`.
|
|
|
|
```sh
|
|
ssh-add ~/.ssh/id_rsa
|
|
ssh-add -L
|
|
```
|
|
|
|
## Apply
|
|
|
|
Initialize the config directory if this is the first use with Terraform.
|
|
|
|
```sh
|
|
terraform init
|
|
```
|
|
|
|
Plan the resources to be created.
|
|
|
|
```sh
|
|
$ terraform plan
|
|
Plan: 86 to add, 0 to change, 0 to destroy.
|
|
```
|
|
|
|
Apply the changes to create the cluster.
|
|
|
|
```sh
|
|
$ terraform apply
|
|
...
|
|
module.ramius.null_resource.bootstrap: Still creating... (6m50s elapsed)
|
|
module.ramius.null_resource.bootstrap: Still creating... (7m0s elapsed)
|
|
module.ramius.null_resource.bootstrap: Creation complete after 7m8s (ID: 3961816482286168143)
|
|
|
|
Apply complete! Resources: 69 added, 0 changed, 0 destroyed.
|
|
```
|
|
|
|
In 4-8 minutes, the Kubernetes cluster will be ready.
|
|
|
|
## Verify
|
|
|
|
[Install kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/) on your system. Obtain the generated cluster `kubeconfig` from module outputs (e.g. write to a local file).
|
|
|
|
```
|
|
resource "local_file" "kubeconfig-ramius" {
|
|
content = module.ramius.kubeconfig-admin
|
|
filename = "/home/user/.kube/configs/ramius-config"
|
|
}
|
|
```
|
|
|
|
List nodes in the cluster.
|
|
|
|
```
|
|
$ export KUBECONFIG=/home/user/.kube/configs/ramius-config
|
|
$ kubectl get nodes
|
|
NAME STATUS ROLES AGE VERSION
|
|
ramius-controller-0 Ready <none> 24m v1.28.3
|
|
ramius-worker-000001 Ready <none> 25m v1.28.3
|
|
ramius-worker-000002 Ready <none> 24m v1.28.3
|
|
```
|
|
|
|
List the pods.
|
|
|
|
```
|
|
$ kubectl get pods --all-namespaces
|
|
NAMESPACE NAME READY STATUS RESTARTS AGE
|
|
kube-system coredns-7c6fbb4f4b-b6qzx 1/1 Running 0 26m
|
|
kube-system coredns-7c6fbb4f4b-j2k3d 1/1 Running 0 26m
|
|
kube-system calico-node-1m5bf 2/2 Running 0 26m
|
|
kube-system calico-node-7jmr1 2/2 Running 0 26m
|
|
kube-system calico-node-bknc8 2/2 Running 0 26m
|
|
kube-system kube-apiserver-ramius-controller-0 1/1 Running 0 26m
|
|
kube-system kube-controller-manager-ramius-controller-0 1/1 Running 0 26m
|
|
kube-system kube-proxy-j4vpq 1/1 Running 0 26m
|
|
kube-system kube-proxy-jxr5d 1/1 Running 0 26m
|
|
kube-system kube-proxy-lbdw5 1/1 Running 0 26m
|
|
kube-system kube-scheduler-ramius-controller-0 1/1 Running 0 26m
|
|
```
|
|
|
|
## Going Further
|
|
|
|
Learn about [maintenance](/topics/maintenance/) and [addons](/addons/overview/).
|
|
|
|
## Variables
|
|
|
|
Check the [variables.tf](https://github.com/poseidon/typhoon/blob/master/azure/flatcar-linux/kubernetes/variables.tf) source.
|
|
|
|
### Required
|
|
|
|
| Name | Description | Example |
|
|
|:-----|:------------|:--------|
|
|
| cluster_name | Unique cluster name (prepended to dns_zone) | "ramius" |
|
|
| region | Azure region | "centralus" |
|
|
| dns_zone | Azure DNS zone | "azure.example.com" |
|
|
| dns_zone_group | Resource group where the Azure DNS zone resides | "global" |
|
|
| ssh_authorized_key | SSH public key for user 'core' | "ssh-rsa AAAAB3NZ..." |
|
|
|
|
!!! tip
|
|
Regions are shown in [docs](https://azure.microsoft.com/en-us/global-infrastructure/regions/) or with `az account list-locations --output table`.
|
|
|
|
#### DNS Zone
|
|
|
|
Clusters create a DNS A record `${cluster_name}.${dns_zone}` to resolve a load balancer backed by controller instances. This FQDN is used by workers and `kubectl` to access the apiserver(s). In this example, the cluster's apiserver would be accessible at `ramius.azure.example.com`.
|
|
|
|
You'll need a registered domain name or delegated subdomain on Azure DNS. You can set this up once and create many clusters with unique names.
|
|
|
|
```tf
|
|
# Azure resource group for DNS zone
|
|
resource "azurerm_resource_group" "global" {
|
|
name = "global"
|
|
location = "centralus"
|
|
}
|
|
|
|
# DNS zone for clusters
|
|
resource "azurerm_dns_zone" "clusters" {
|
|
resource_group_name = azurerm_resource_group.global.name
|
|
|
|
name = "azure.example.com"
|
|
zone_type = "Public"
|
|
}
|
|
```
|
|
|
|
Reference the DNS zone with `azurerm_dns_zone.clusters.name` and its resource group with `"azurerm_resource_group.global.name`.
|
|
|
|
!!! tip ""
|
|
If you have an existing domain name with a zone file elsewhere, just delegate a subdomain that can be managed on Azure DNS (e.g. azure.mydomain.com) and [update nameservers](https://docs.microsoft.com/en-us/azure/dns/dns-delegate-domain-azure-dns).
|
|
|
|
### Optional
|
|
|
|
| Name | Description | Default | Example |
|
|
|:-----|:------------|:--------|:--------|
|
|
| controller_count | Number of controllers (i.e. masters) | 1 | 1 |
|
|
| worker_count | Number of workers | 1 | 3 |
|
|
| controller_type | Machine type for controllers | "Standard_B2s" | See below |
|
|
| worker_type | Machine type for workers | "Standard_D2as_v5" | See below |
|
|
| os_image | Channel for a Container Linux derivative | "flatcar-stable" | flatcar-stable, flatcar-beta, flatcar-alpha |
|
|
| disk_size | Size of the disk in GB | 30 | 100 |
|
|
| worker_priority | Set priority to Spot to use reduced cost surplus capacity, with the tradeoff that instances can be deallocated at any time | Regular | Spot |
|
|
| controller_snippets | Controller Container Linux Config snippets | [] | [example](/advanced/customization/#usage) |
|
|
| worker_snippets | Worker Container Linux Config snippets | [] | [example](/advanced/customization/#usage) |
|
|
| networking | Choice of networking provider | "cilium" | "calico" or "cilium" or "flannel" |
|
|
| host_cidr | CIDR IPv4 range to assign to instances | "10.0.0.0/16" | "10.0.0.0/20" |
|
|
| pod_cidr | CIDR IPv4 range to assign to Kubernetes pods | "10.2.0.0/16" | "10.22.0.0/16" |
|
|
| service_cidr | CIDR IPv4 range to assign to Kubernetes services | "10.3.0.0/16" | "10.3.0.0/24" |
|
|
| worker_node_labels | List of initial worker node labels | [] | ["worker-pool=default"] |
|
|
|
|
Check the list of valid [machine types](https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/) and their [specs](https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-general). Use `az vm list-skus` to get the identifier.
|
|
|
|
!!! warning
|
|
Unlike AWS and GCP, Azure requires its *virtual* networks to have non-overlapping IPv4 CIDRs (yeah, go figure). Instead of each cluster just using `10.0.0.0/16` for instances, each Azure cluster's `host_cidr` must be non-overlapping (e.g. 10.0.0.0/20 for the 1st cluster, 10.0.16.0/20 for the 2nd cluster, etc).
|
|
|
|
!!! warning
|
|
Do not choose a `controller_type` smaller than `Standard_B2s`. Smaller instances are not sufficient for running a controller.
|
|
|
|
#### Spot Priority
|
|
|
|
Add `worker_priority=Spot` to use [Spot Priority](https://docs.microsoft.com/en-us/azure/virtual-machines/linux/spot-vms) workers that run on Azure's surplus capacity at lower cost, but with the tradeoff that they can be deallocated at random. Spot priority VMs are Azure's analog to AWS spot instances or GCP premptible instances.
|