* Add "lb" outbound rule for worker TCP _and_ UDP traffic
* Fix Azure worker nodes clock synchronization being inactive
due to timeouts reaching the CoreOS / Flatcar NTP pool
* Fix Azure worker nodes not providing outbount UDP connectivity
Background:
Azure provides VMs outbound connectivity either by having a public
IP or via an SNAT masquerade feature bundled with their virtual
load balancing abstraction (in contrast with, say, a NAT gateway).
Azure worker nodes have only a private IP, but are associated with
the cluster load balancer's backend pool and ingress frontend IP.
Outbound traffic uses SNAT with this frontend IP. A subtle detail
with Azure SNAT seems to be that since both inbound lb_rule's are
TCP only, outbound UDP traffic isn't SNAT'd (highlights the reasons
Azure shouldn't have conflated inbound load balancing with outbound
SNAT concepts). However, adding a separate outbound rule and
disabling outbound SNAT on our ingress lb_rule's we can tell Azure
to continue load balancing as before, and support outbound SNAT for
worker traffic of both the TCP and UDP protocol.
Fixes clock synchronization timeouts:
```
systemd-timesyncd[786]: Timed out waiting for reply from
45.79.36.123:123 (3.flatcar.pool.ntp.org)
```
Azure controller nodes have their own public IP, so controllers (and
etcd) nodes have not had clock synchronization or outbound UDP issues
* Fix bootstrap error for missing `manifests-networking/crd*yaml`
when `networking = "flannel"`
* Cleanup manifest-networking directory left during bootstrap
* Regressed in v1.18.0 changes for Calico https://github.com/poseidon/typhoon/pull/675
* Change kube-proxy, flannel, and calico-node DaemonSet
tolerations to tolerate `node.kubernetes.io/not-ready`
and `node-role.kubernetes.io/master` (i.e. controllers)
explicitly, rather than tolerating all taints
* kube-system DaemonSets will no longer tolerate custom
node taints by default. Instead, custom node taints must
be enumerated to opt-in to scheduling/executing the
kube-system DaemonSets
* Consider setting the daemonset_tolerations variable
of terraform-render-bootstrap at a later date
Background: Tolerating all taints ruled out use-cases
where certain nodes might legitimately need to keep
kube-proxy or CNI networking disabled
Related: https://github.com/poseidon/terraform-render-bootstrap/pull/179
* Problem: Fedora CoreOS images are manually uploaded to GCP. When a
cluster is created with a stale image, Zincati immediately checks
for the latest stable image, fetches, and reboots. In practice,
this can unfortunately occur exactly during the initial cluster
bootstrap phase.
* Recommended: Upload the latest Fedora CoreOS image regularly
* Mitigation: Allow a failed bootstrap.service run (which won't touch
the done ConditionalPathExists) to be re-run by running `terraforma apply`
again. Add a known issue to CHANGES
* Update docs to show the current Fedora CoreOS stable version to
reduce likelihood users see this issue
Longer term ideas:
* Ideal: Fedora CoreOS publishes a stable channel. Instances will always
boot with the latest image in a channel. The problem disappears since
it works the same way AWS does
* Timer: Consider some timer-based approach to have zincati delay any
system reboots for the first ~30 min of a machine's life. Possibly just
configured on the controller node https://github.com/coreos/zincati/pull/251
* External coordination: For Container Linux, locksmith filled a similar
role and was disabled to allow CLUO to coordinate reboots. By running
atop Kubernetes, it was not possible for the reboot to occur before
cluster bootstrap
* Rely on https://github.com/coreos/zincati/issues/115 to delay the
reboot since bootstrap involves an SSH session
* Use path-based activation of zincati on controllers and set that
path at the end of the bootstrap process
Rel: https://github.com/coreos/fedora-coreos-tracker/issues/239
* Fix issue observed in us-east-1 where AMI filters chose the
latest testing channel release, rather than the stable chanel
* Fedora CoreOS AMI filter selects the latest image with a
matching name, x86_64, and hvm, excluding dev images. Add a
filter for "Fedora CoreOS stable", which seems to be the only
distinguishing metadata indicating the channel
* Recommend that users who have not yet tried Fedora CoreOS or
Flatcar Linux do so. Likely, Container Linux will reach EOL
and platform support / stability ratings will be in a mixed
state. Nevertheless, folks should migrate by September.
* Before Kubernetes v1.18.0, Kubelet only supported kubectl
`--limit-bytes` with the Docker `json-file` log driver so
the Fedora CoreOS default was overridden for conformance.
See https://github.com/poseidon/typhoon/pull/642
* Kubelet v1.18+ implemented support for other docker log
drivers, so the Fedora CoreOS default `journald` can be
used again
Rel: https://github.com/kubernetes/kubernetes/issues/86367
* Remove docs for the `asset_dir` variable and deprecate
it in CHANGES. It will be removed in an upcoming release
* Typhoon v1.17.0 introduced a new mechanism for managing
and distributing generated assets that stopped relying on
writing out to disk. `asset_dir` became optional and
defaulted to being unset / off (recommended)
* Kubernetes plans to stop releasing the hyperkube container image
* Upstream will continue to publish `kube-apiserver`, `kube-controller-manager`,
`kube-scheduler`, and `kube-proxy` container images to `k8s.gcr.io`
* Upstream will publish Kubelet only as a binary for distros to package,
either as a DEB/RPM on traditional distros or a container image on
container-optimized operating systems
* Typhoon will package the upstream Kubelet (checksummed) and its
dependencies as a container image for use on CoreOS Container Linux,
Flatcar Linux, and Fedora CoreOS
* Update the Typhoon container image security policy to list
`quay.io/poseidon/kubelet`as an official distributed artifact
Hyperkube: https://github.com/kubernetes/kubernetes/pull/88676
Kubelet Container Image: https://github.com/poseidon/kubelet
Kubelet Quay Repo: https://quay.io/repository/poseidon/kubelet
* Stop providing example manifests for the Container Linux
Update Operator (CLUO)
* CLUO requires patches to support Kubernetes v1.16+, but the
project and push access is rather unowned
* CLUO hasn't been in active use in our clusters and won't be
relevant beyond Container Linux. Not to say folks can't patch
it and run it on their own. Examples just aren't provided here
Related: https://github.com/coreos/container-linux-update-operator/pull/197
* Accept `os_image` "flatcar-stable" and "flatcar-beta" to
use Kinvolk's Flatcar Linux images from the Azure Marketplace
Note: Flatcar Linux Azure Marketplace images require terms be
accepted before use
* Add `worker_node_labels` map from node name to a list of initial
node label strings
* Add `worker_node_taints` map from node name to a list of initial
node taint strings
* Unlike cloud platforms, bare-metal node labels and taints
are defined via a map from node name to list of labels/taints.
Bare-metal clusters may have heterogeneous hardware so per node
labels and taints are accepted
* Only worker node names are allowed. Workloads are not scheduled
on controller nodes so altering their labels/taints isn't suitable
```
module "mercury" {
...
worker_node_labels = {
"node2" = ["role=special"]
}
worker_node_taints = {
"node2" = ["role=special:NoSchedule"]
}
}
```
Related: https://github.com/poseidon/typhoon/issues/429
* Add support for `terraform-provider-azurerm` v2.0+. Require
`terraform-provider-azurerm` v2.0+ and drop v1.x support since
the Azure provider major release is not backwards compatible
* Use Azure's new Linux VM and Linux VM Scale Set resources
* Change controller's Azure disk caching to None
* Associate subnets (in addition to NICs) with security groups
(aesthetic)
* If set, change `worker_priority` from `Low` to `Spot` (action required)
Related:
* https://www.terraform.io/docs/providers/azurerm/guides/2.0-upgrade-guide.html
* Add 2 min wait before KubeNodeUnreachable to be less
noisy on premeptible clusters
* Add a BlackboxProbeFailure alert for any failing probes
for services annotated `prometheus.io/probe: true`
* Quay has historically generated ACI signatures for images to
facilitate rkt's notions of verification (it allowed authors to
actually sign images, though `--trust-keys-from-https` is in use
since etcd and most authors don't sign images). OCI standardization
didn't adopt verification ideas and checking signatures has fallen
out of favor.
* Fix an issue where Quay no longer seems to be generating ACI
signatures for new images (e.g. quay.io/coreos/etcd:v.3.4.4)
* Don't be alarmed by rkt `--insecure-options=image`. It refers
to disabling image signature checking (i.e. docker pull doesn't
check signatures either)
* System containers for Kubelet and bootstrap have transitioned
to the docker:// transport, so there is precedent and this brings
all the system containers on Container Linux controllers into
alignment
* On clouds where workers can scale down or be preempted
(AWS, GCP, Azure), shutdown runs delete-node.service to
remove a node a prevent NotReady nodes from lingering
* Add the delete-node.service that wasn't carried over
from Container Linux and port it to use podman
* Allow users to extend the route table using a data reference
and adding route resources (e.g. unusual peering setups)
* Note: Internally connecting AWS clusters can reduce cross-cloud
flexibility and inhibits blue-green cluster patterns. It is not
recommended
* Add Terraform strip markers to consume beginning and
trailing whitespace in templated Kubelet arguments for
podman (Fedora CoreOS only)
* Fix initial `worker_node_labels` being quietly ignored
on Fedora CoreOS cloud platforms that offer the feature
* Close https://github.com/poseidon/typhoon/issues/650
* Add docs on manually uploading a Flatcar Linux DigitalOcean
bin image as a custom image and using a data reference
* Set status of Flatcar Linux on DigitalOcean to alpha
* IPv6 is not supported for DigitalOcean custom images
* Fix the last minor issue for Fedora CoreOS clusters to pass CNCF's
Kubernetes conformance tests
* Kubelet supports a seldom used feature `kubectl logs --limit-bytes=N`
to trim a log stream to a desired length. Kubelet handles this in the
CRI driver. The Kubelet docker shim only supports the limit bytes
feature when Docker is configured with the default `json-file` logging
driver
* CNCF conformance tests started requiring limit-bytes be supported,
indirectly forcing the log driver choice until either the Kubelet or
the conformance tests are fixed
* Fedora CoreOS defaults Docker to use `journald` (desired). For now,
as a workaround to offer conformant clusters, the log driver can
be set back to `json-file`. RHEL CoreOS likely won't have noticed the
non-conformance since its using crio runtime
* https://github.com/kubernetes/kubernetes/issues/86367
Note: When upstream has a fix, the aim is to drop the docker config
override and use the journald default
* Add docs on manually uploading a Flatcar Linux GCE/GCP gzipped
tarball image as a Compute Engine image for use with the Typhoon
container-linux module
* Set status of Flatcar Linux on Google Cloud to alpha
* Add Typhoon Fedora CoreOS on Google Cloud as alpha
* Add docs on uploading the Fedora CoreOS GCP gzipped tarball to
Google Cloud storage to create a boot disk image
* Use Fedora CoreOS production download streams (change)
* Use live PXE kernel and initramfs images
* https://getfedora.org/coreos/download/
* Update docs example to use public images (cache is still
recommended at large scale) and stable stream
* Typhoon Google Cloud is compatible with `terraform-provider-google`
v3.x releases
* No v3.x specific features are used, so v2.19+ provider versions are
still allowed, to ease migrations
* Change node-exporter DaemonSet tolerations from tolerating
all possible NoSchedule taints to tolerating the master taint
and the not ready taint (we'd like metrics regardless)
* Users who add custom node taints must add their custom taints
to the addon node-exporter DaemonSet. As an addon, its expected
users copy and manipulate manifests out-of-band in their own
systems
* Configure kube-proxy --metrics-bind-address=0.0.0.0 (default
127.0.0.1) to serve metrics on 0.0.0.0:10249
* Add firewall rules to allow Prometheus (resides on a worker) to
scrape kube-proxy service endpoints on controllers or workers
* Add a clusterIP: None service for kube-proxy endpoint discovery
* Change kubelet.service on Container Linux nodes to ExecStart Kubelet
inline to replace the use of the host OS kubelet-wrapper script
* Express rkt run flags and volume mounts in a clear, uniform way to
make the Kubelet service easier to audit, manage, and understand
* Eliminate reliance on a Container Linux kubelet-wrapper script
* Typhoon for Fedora CoreOS developed a kubelet.service that similarly
uses an inline ExecStart (except with podman instead of rkt) and a
more minimal set of volume mounts. Adopt the volume improvements:
* Change Kubelet /etc/kubernetes volume to read-only
* Change Kubelet /etc/resolv.conf volume to read-only
* Remove unneeded /var/lib/cni volume mount
Background:
* kubelet-wrapper was added in CoreOS around the time of Kubernetes v1.0
to simplify running a CoreOS-built hyperkube ACI image via rkt-fly. The
script defaults are no longer ideal (e.g. rkt's notion of trust dates
back to quay.io ACI image serving and signing, which informed the OCI
standard images we use today, though they still lack rkt's signing ideas).
* Shipping kubelet-wrapper was regretted at CoreOS, but remains in the
distro for compatibility. The script is not updated to track hyperkube
changes, but it is stable and kubelet.env overrides bridge most gaps
* Typhoon Container Linux nodes have used kubelet-wrapper to rkt/rkt-fly
run the Kubelet via the official k8s.gcr.io hyperkube image using overrides
(new image registry, new image format, restart handling, new mounts, new
entrypoint in v1.17).
* Observation: Most of what it takes to run a Kubelet container is defined
in Typhoon, not in kubelet-wrapper. The wrapper's value is now undermined
by having to workaround its dated defaults. Typhoon may be better served
defining Kubelet.service explicitly
* Typhoon for Fedora CoreOS developed a kubelet.service without the use
of a host OS kubelet-wrapper which is both clearer and eliminated some
volume mounts
* Update recommended Terraform and provider plugin versions
* Update the rough count of resources created per cluster
since its not been refreshed in a while (will vary based
on cluster options)
* Stop mapping node labels to targets discovered via Kubernetes
nodes (e.g. etcd, kubelet, cadvisor). It is rarely useful to
store node labels (e.g. kubernetes.io/os=linux) on these metrics
* kube-apiserver's apiserver_request_duration_seconds_bucket metric
has a high cardinality that includes labels for the API group, verb,
scope, resource, and component for each object type, including for
each CRD. This one metric has ~10k time series in a typical cluster
(btw 10-40% of total)
* Removing the apiserver request duration outright would make latency
alerts a NoOp and break a Grafana apiserver panel. Instead, drop series
that have a "group" label. Effectively, only request durations for
core Kubernetes APIs will be kept (e.g. cardinality won't grow with
each CRD added). This reduces the metric to ~2k unique series
* Original tutorials favored including the platform (e.g.
google-cloud) in modules (e.g. google-cloud-yavin). Prefer
naming conventions where each module / cluster has a simple
name (e.g. yavin) since the platform is usually redundant
* Retain the example cluster naming themes per platform
* kubernetes-mixin pod resource dashboards were split into
two ConfigMap parts because they provide richer networking
details
* New dashboards have been used by the author at the global
level, but were missing in the per-cluster Grafana tracked
here
* Add Prometheus alerts from node-exporter
* Add Grafana dashboard nodes.json, from node-exporter
* Not adding recording rules, since those are only used
by some node-exporter USE dashboards not being included
* terraform-provider-google v2.19.0 deprecates `instance_template`
within `google_compute_region_instance_group_manager` in order to
support a scheme with multiple version blocks. Adapt our single
version to the new format to resolve deprecation warnings.
* Fixes: Warning: "instance_template": [DEPRECATED] This field
will be replaced by `version.instance_template` in 3.0.0
* Require terraform-provider-google v2.19.0+ (action required)
* Set small CPU requests on static pods kube-apiserver,
kube-controller-manager, and kube-scheduler to align with
upstream tooling and for edge cases
* Effectively, a practical case for these requests hasn't been
observed. However, a small static pod CPU request may offer
a slight benefit if a controller became overloaded and the
below mechanisms were insufficient
Existing safeguards:
* Control plane nodes are tainted to isolate them from
ordinary workloads. Even dense workloads can only compress
CPU resources on worker nodes.
* Control plane static pods use the highest priority class, so
contention favors control plane pods (over say node-exporter)
and CPU is compressible too.
See: https://github.com/poseidon/terraform-render-bootstrap/pull/161
* Update terraform-render-bootstrap module to adopt the
Terrform v0.12 templatefile function feature to replace
the use of terraform-provider-template's `template_dir`
* Require Terraform v0.12.6+ which adds `for_each`
Background:
* `template_dir` was added to `terraform-provider-template`
to add support for template directory rendering in CoreOS
Tectonic Kubernetes distribution (~2017)
* Terraform v0.12 introduced a native `templatefile` function
and v0.12.6 introduced native `for_each` support (July 2019)
that makes it possible to replace `template_dir` usage