* Fedora CoreOS now ships systemd-udev's `default.link` while
Flannel relies on being able to pick its own MAC address for
the `flannel.1` link for tunneled traffic to reach cni0 on
the destination side, without being dropped
* This change first appeared in FCOS testing-devel 32.20200624.20.1
and is the behavior going forward in FCOS since it was added
to align FCOS network naming / configs with the rest of Fedora
and address issues related to the default being missing
* Flatcar Linux (and Container Linux) has a specific flannel.link
configuration builtin, so it was not affected
* https://github.com/coreos/fedora-coreos-tracker/issues/574#issuecomment-665487296
Note: Typhoon's recommended and default CNI provider is Calico,
unless `networking` is set to flannel directly.
* DigitalOcean introduced Virtual Private Cloud (VPC) support
to match other clouds and enhance the prior "private networking"
feature. Before, droplet's belonging to different clusters (but
residing in the same region) could reach one another (although
Typhoon firewall rules prohibit this). Now, droplets in a VPC
reside in their own network
* https://www.digitalocean.com/docs/networking/vpc/
* Create droplet instances in a VPC per cluster. This matches the
design of Typhoon AWS, Azure, and GCP.
* Require `terraform-provider-digitalocean` v1.16.0+ (action required)
* Output `vpc_id` for use with an attached DigitalOcean
loadbalancer
* Accept experimental CNI `networking` mode "cilium"
* Run Cilium v1.8.0-rc4 with overlay vxlan tunnels and a
minimal set of features. We're interested in:
* IPAM: Divide pod_cidr into /24 subnets per node
* CNI networking pod-to-pod, pod-to-external
* BPF masquerade
* NetworkPolicy as defined by Kubernetes (no L7 Policy)
* Continue using kube-proxy with Cilium probe mode
* Firewall changes:
* Require UDP 8472 for vxlan (Linux kernel default) between nodes
* Optional ICMP echo(8) between nodes for host reachability
(health)
* Optional TCP 4240 between nodes for endpoint reachability (health)
Known Issues:
* Containers with `hostPort` don't listen on all host addresses,
these workloads must use `hostNetwork` for now
https://github.com/cilium/cilium/issues/12116
* Erroneous warning on Fedora CoreOS
https://github.com/cilium/cilium/issues/10256
Note: This is experimental. It is not listed in docs and may be
changed or removed without a deprecation notice
Related:
* https://github.com/poseidon/terraform-render-bootstrap/pull/192
* https://github.com/cilium/cilium/issues/12217
* Remove node label `node.kubernetes.io/master` from controller nodes
* Use `node.kubernetes.io/controller` (present since v1.9.5,
[#160](https://github.com/poseidon/typhoon/pull/160)) to node select controllers
* Rename controller NoSchedule taint from `node-role.kubernetes.io/master` to
`node-role.kubernetes.io/controller`
* Tolerate the new taint name for workloads that may run on controller nodes
and stop tolerating `node-role.kubernetes.io/master` taint
* Kubelet `--lock-file` and `--exit-on-lock-contention` date
back to usage of bootkube and at one point running Kubelet
in a "self-hosted" style whereby an on-host Kubelet (rkt)
started pods, but then a Kubelet DaemonSet was scheduled
and able to take over (hence self-hosted). `lock-file` and
`exit-on-lock-contention` flags supported this pivot. The
pattern has been out of favor (in bootkube too) for years
because of dueling Kubelet complexity
* Typhoon runs Kubelet as a container via an on-host systemd
unit using podman (Fedora CoreOS) or rkt (Flatcar Linux). In
fact, Typhoon no longer uses bootkube or control plane pivot
(let alone Kubelet pivot) and uses static pods since v1.16.0
* https://github.com/poseidon/typhoon/pull/536
* Generated Kubelet TLS certificate and key are not longer
used or distributed to machines since Kubelet TLS bootstrap
is used instead. Remove the certificate and key from state
* Enable terraform-provider-ct `strict` mode for parsing
Container Linux Configs and snippets
* Fix Container Linux Config systemd unit syntax `enable`
(old) to `enabled`
* Align with Fedora CoreOS which uses strict mode already
* Build Kubelet container images internally and publish
to Quay and Dockerhub (new) as an alternative in case of
registry outage or breach
* Use our infra to provide single and multi-arch (default)
Kublet images for possible future use
* Docs: Show how to use alternative Kubelet images via
snippets and a systemd dropin (builds on #737)
Changes:
* Update docs with changes to Kubelet image building
* If you prefer to trust images built by Quay/Dockerhub,
automated image builds are still available with unique
tags (albeit with some limitations):
* Quay automated builds are tagged `build-{short_sha}`
(limit: only amd64)
* Dockerhub automated builts are tagged `build-{tag}`
and `build-master` (limit: only amd64, no shas)
Links:
* Kubelet: https://github.com/poseidon/kubelet
* Docs: https://typhoon.psdn.io/topics/security/#container-images
* Registries:
* quay.io/poseidon/kubelet
* docker.io/psdn/kubelet
* Write the systemd kubelet.service to use `KUBELET_IMAGE`
as the Kubelet. This provides a nice way to use systemd
dropins to temporarily override the image (e.g. during a
registry outage)
Note: Only Typhoon Kubelet images and registries are supported.
* Set a consistent MCS level/range for Calico install-cni
* Note: Rebooting a node was a workaround, because Kubelet
relabels /etc/kubernetes(/cni/net.d)
Background:
* On SELinux enforcing systems, the Calico CNI install-cni
container ran with default SELinux context and a random MCS
pair. install-cni places CNI configs by first creating a
temporary file and then moving them into place, which means
the file MCS categories depend on the containers SELinux
context.
* calico-node Pod restarts creates a new install-cni container
with a different MCS pair that cannot access the earlier
written file (it places configs every time), causing the
init container to error and calico-node to crash loop
* https://github.com/projectcalico/cni-plugin/issues/874
```
mv: inter-device move failed: '/calico.conf.tmp' to
'/host/etc/cni/net.d/10-calico.conflist'; unable to remove target:
Permission denied
Failed to mv files. This may be caused by selinux configuration on
the
host, or something else.
```
Note, this isn't a host SELinux configuration issue.
Related:
* https://github.com/poseidon/terraform-render-bootstrap/pull/186
* Enable bootstrap token authentication on kube-apiserver
* Generate the bootstrap.kubernetes.io/token Secret that
may be used as a bootstrap token
* Generate a bootstrap kubeconfig (with a bootstrap token)
to be securely distributed to nodes. Each Kubelet will use
the bootstrap kubeconfig to authenticate to kube-apiserver
as `system:bootstrappers` and send a node-unique CSR for
kube-controller-manager to automatically approve to issue
a Kubelet certificate and kubeconfig (expires in 72 hours)
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the `system:node-bootstrapper`
ClusterRole
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the csr nodeclient ClusterRole
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the csr selfnodeclient ClusterRole
* Enable NodeRestriction admission controller to limit the
scope of Node or Pod objects a Kubelet can modify to those of
the node itself
* Ability for a Kubelet to delete its Node object is retained
as preemptible nodes or those in auto-scaling instance groups
need to be able to remove themselves on shutdown. This need
continues to have precedence over any risk of a node deleting
itself maliciously
Security notes:
1. Issued Kubelet certificates authenticate as user `system:node:NAME`
and group `system:nodes` and are limited in their authorization
to perform API operations by Node authorization and NodeRestriction
admission. Previously, a Kubelet's authorization was broader. This
is the primary security motivation.
2. The bootstrap kubeconfig credential has the same sensitivity
as the previous generated TLS client-certificate kubeconfig.
It must be distributed securely to nodes. Its compromise still
allows an attacker to obtain a Kubelet kubeconfig
3. Bootstrapping Kubelet kubeconfig's with a limited lifetime offers
a slight security improvement.
* An attacker who obtains the kubeconfig can likely obtain the
bootstrap kubeconfig as well, to obtain the ability to renew
their access
* A compromised bootstrap kubeconfig could plausibly be handled
by replacing the bootstrap token Secret, distributing the token
to new nodes, and expiration. Whereas a compromised TLS-client
certificate kubeconfig can't be revoked (no CRL). However,
replacing a bootstrap token can be impractical in real cluster
environments, so the limited lifetime is mostly a theoretical
benefit.
* Cluster CSR objects are visible via kubectl which is nice
4. Bootstrapping node-unique Kubelet kubeconfigs means Kubelet
clients have more identity information, which can improve the
utility of audits and future features
Rel: https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/
Rel: https://github.com/poseidon/terraform-render-bootstrap/pull/185
* DigitalOcean firewall rules should reference Terraform tag
resources rather than using tag strings. Otherwise, terraform
apply can fail (neeeds rerun) if a tag has not yet been created
* Race: During initial bootstrap, static control plane pods
could hang with Permission denied to bootstrap secrets. A
manual fix involved restarting Kubelet, which relabeled mounts
The race had no effect on subsequent reboots.
* bootstrap.service runs podman with a private unshared mount
of /etc/kubernetes/bootstrap-secrets which uses an SELinux MCS
label with a category pair. However, bootstrap-secrets should
be shared as its mounted by Docker pods kube-apiserver,
kube-scheduler, and kube-controller-manager. Restarting Kubelet
was a manual fix because Kubelet relabels all /etc/kubernetes
* Fix bootstrap Pod to use the shared volume label, which leaves
bootstrap-secrets files with SELinux level s0 without MCS
* Also allow failed bootstrap.service to be re-applied. This was
missing on bare-metal and AWS