Add concepts, tutorials, and faq docs

* Add bare-metal tutorial
* Add DigitalOcean tutorial
* Add Google Cloud tutorial
This commit is contained in:
Dalton Hubble 2017-08-06 18:27:45 -07:00
parent 056bd8a059
commit 2faacc6a50
18 changed files with 1210 additions and 0 deletions

4
docs/addons/calico.md Normal file
View File

@ -0,0 +1,4 @@
# Calico Policy
!!! bug "In Progress"
These docs haven't been moved over yet.

6
docs/addons/cluo.md Normal file
View File

@ -0,0 +1,6 @@
# Container Linux Update Operator
More aptly named "Container Linux Reboot Coordinator".
!!! bug "In Progress"
These docs haven't been completed yet.

4
docs/addons/dashboard.md Normal file
View File

@ -0,0 +1,4 @@
# Kubernetes Dashboard
!!! bug "In Progress"
These docs haven't been completed yet.

4
docs/addons/heapster.md Normal file
View File

@ -0,0 +1,4 @@
# Heapster
!!! bug "In Progress"
These docs haven't been moved over yet.

4
docs/addons/ingress.md Normal file
View File

@ -0,0 +1,4 @@
# Ingress Controller
!!! bug "In Progress"
These docs haven't been moved over yet.

12
docs/addons/overview.md Normal file
View File

@ -0,0 +1,12 @@
# Addons
Every Typhoon cluster is verified to work well with several post-install addons.
* Nginx [Ingress Controller](ingress.md)
* Calico [Network Policy](calico.md)
* [Heapster](heapster.md)
* Kubernetes [Dashboard](dashboard.md)
* [CLUO](cluo.md) (Container Linux only)
* Prometheus
* Grafana

View File

@ -0,0 +1,6 @@
# Customization
To customize clusters in ways that aren't supported by input variables, fork the repo and make changes to the Terraform module. Stay tuned for improvements to this strategy since it is beneficial to stay close to this upstream.
To customize lower-level Kubernetes control plane bootstrapping, see the [poseidon/bootkube-terraform](https://github.com/poseidon/bootkube-terraform) Terraform module.

362
docs/bare-metal.md Normal file
View File

@ -0,0 +1,362 @@
# Bare-Metal
In this tutorial, we'll network boot and provison a Kubernetes v1.7.3 cluster on bare-metal.
First, we'll deploy a [Matchbox](https://github.com/coreos/matchbox) service and setup a network boot environment. Then, we'll declare a Kubernetes cluster in Terraform using the Typhoon Terraform module and power on machines. On PXE boot, machines will install Container Linux to disk, reboot into the disk install, and provision themselves as Kubernetes controllers or workers.
Controllers are provisioned as etcd peers and run `etcd-member` (etcd3) and `kubelet`. Workers are provisioned to run a `kubelet`. A one-time [bootkube](https://github.com/kubernetes-incubator/bootkube) bootstrap schedules an `apiserver`, `scheduler`, `controller-manager`, and `kube-dns` on controllers and runs `kube-proxy` and `flannel` on each node. A generated `kubeconfig` provides `kubectl` access to the cluster.
## Requirements
* Machines with 2GB RAM, 30GB disk, PXE-enabled NIC, IPMI
* PXE-enabled [network boot](https://coreos.com/matchbox/docs/latest/network-setup.html) environment
* Matchbox v0.6+ deployment with API enabled
* Matchbox credentials `client.crt`, `client.key`, `ca.crt`
* Terraform v0.9.2+ and [terraform-provider-matchbox](https://github.com/coreos/terraform-provider-matchbox) installed locally
## Machines
Collect a MAC address from each machine. For machines with multiple PXE-enabled NICs, pick one of the MAC addresses. MAC addresses will be used to match machines to profiles during network boot.
* 52:54:00:a1:9c:ae (node1)
* 52:54:00:b2:2f:86 (node2)
* 52:54:00:c3:61:77 (node3)
Configure each machine to boot from the disk [^1] through IPMI or the BIOS menu.
[^1]: Configuring "diskless" workers that always PXE boot is possible, but not in the scope of this tutorial.
```
ipmitool -H node1 -U USER -P PASS chassis bootdev disk options=persistent
```
During provisioning, you'll explicitly set the boot device to `pxe` for the next boot only. Machines will install (overwrite) the operting system to disk on PXE boot and reboot into the disk install.
!!! tip ""
Ask your hardware vendor to provide MACs and preconfigure IPMI, if possible. With it, you can rack new servers, `terraform apply` with new info, and power on machines that network boot and provision into clusters.
## DNS
Create a DNS A (or AAAA) record for each node's default interface. Create a record that resolves to each controller node (or re-use the node record if there's one controller).
* node1.example.com (node1)
* node2.example.com (node2)
* node3.example.com (node3)
* myk8s.example.com (node1)
Cluster nodes will be configured to refer to the control plane and themselves by these fully qualified names and they'll be used in generated TLS certificates.
## Matchbox
Matchbox is an open-source app that matches network-booted bare-metal machines (based on labels like MAC, UUID, etc.) to profiles to automate cluster provisioning.
Install Matchbox on a Kubernetes cluster or dedicated server.
* Installing on [Kubernetes](https://coreos.com/matchbox/docs/latest/deployment.html#kubernetes) (recommended)
* Installing on a [server](https://coreos.com/matchbox/docs/latest/deployment.html#download)
!!! tip
Deploy Matchbox as service that can be accessed by all of your bare-metal machines globally. This provides a single endpoint to use Terraform to manage bare-metal clusters at different sites. Typhoon will never include secrets in provisioning user-data so you may even deploy matchbox publicly.
Matchbox provides a TLS client-authenticated API that clients, like Terraform, can use to manage machine matching and profiles. Think of it like a cloud provider API, but for creating bare-metal instances.
[Generate TLS](https://coreos.com/matchbox/docs/latest/deployment.html#generate-tls-certificates) client credentials. Save the `ca.crt`, `client.crt`, and `client.key` where they can be referenced in Terraform configs.
```sh
mv ca.crt client.crt client.key ~/.config/matchbox/
```
Verify the matchbox read-only HTTP endpoints are accessible (port is configurable).
```sh
$ curl http://matchbox.example.com:8080
matchbox
```
Verify your TLS client certificate and key can be used to access the Matchbox API (port is configurable).
```sh
$ openssl s_client -connect matchbox.example.com:8081 \
-CAfile ~/.config/matchbox/ca.crt \
-cert ~/.config/matchbox/client.crt \
-key ~/.config/matchbox/client.key
```
## PXE Environment
Create a iPXE-enabled network boot environment. Configure PXE clients to chainload [iPXE](http://ipxe.org/cmd) and instruct iPXE clients to chainload from your Matchbox service's `/boot.ipxe` endpoint.
For networks already supporting iPXE clients, you can add a `default.ipxe` config.
```ini
# /var/www/html/ipxe/default.ipxe
chain http://matchbox.foo:8080/boot.ipxe
```
For networks with Ubiquiti Routers, you can [configure the router](TODO) itself to chainload machines to iPXE and Matchbox.
For a small lab, you may wish to checkout the [quay.io/coreos/dnsmasq](https://quay.io/repository/coreos/dnsmasq) container image and [copy-paste examples](https://github.com/coreos/matchbox/blob/master/Documentation/network-setup.md#coreosdnsmasq).
Read about the [many ways](https://coreos.com/matchbox/docs/latest/network-setup.html) to setup a compliant iPXE-enabled network. There is quite a bit of flexibility:
* Continue using existing DHCP, TFTP, or DNS services
* Configure specific machines, subnets, or architectures to chainload from Matchbox
* Place Matchbox behind a menu entry (timeout and default to Matchbox)
!!! note ""
TFTP chainloding to modern boot firmware, like iPXE, avoids issues with old NICs and allows faster transfer protocols like HTTP to be used.
## Terraform Setup
Install [Terraform](https://www.terraform.io/downloads.html) v0.9.2+ on your system.
```sh
$ terraform version
Terraform v0.10.1
```
Add the [terraform-provider-matchbox](https://github.com/coreos/terraform-provider-matchbox) plugin binary for your system.
```sh
wget https://github.com/coreos/terraform-provider-matchbox/releases/download/v0.2.2/terraform-provider-matchbox-v0.2.2-linux-amd64.tar.gz
tar xzf terraform-provider-matchbox-v0.2.2-linux-amd64.tar.gz
sudo mv terraform-provider-matchbox-v0.2.2-linux-amd64/terraform-provider-matchbox /usr/local/bin/
```
Add the plugin to your `~/.terraformrc`.
```
providers {
ct = "/usr/local/bin/terraform-provider-matchbox"
}
```
Read [concepts](concepts.md) to learn about Terraform, modules, and organizing resources. Change to your infrastructure repository (e.g. `infra`).
```
cd infra/clusters
```
## Provider
Configure the Matchbox provider to use your Matchbox API endpoint and client certificate.
```tf
provider "matchbox" {
endpoint = "matchbox.example.com:8081"
client_cert = "${file("~/.config/matchbox/client.crt")}"
client_key = "${file("~/.config/matchbox/client.key")}"
ca = "${file("~/.config/matchbox/ca.crt")}"
}
```
## Cluster
Define a Kubernetes cluster using the module `bare-metal/container-linux/kubernetes`.
```tf
module "bare-metal-mercury" {
source = "git::https://github.com/poseidon/typhoon//bare-metal/container-linux/kubernetes"
# install
matchbox_http_endpoint = "http://matchbox.example.com"
container_linux_channel = "stable"
container_linux_version = "1465.6.0"
ssh_authorized_key = "ssh-rsa AAAAB3Nz..."
# cluster
cluster_name = "mercury"
k8s_domain_name = "node1.example.com"
# machines
controller_names = ["node1"]
controller_macs = ["52:54:00:a1:9c:ae"]
controller_domains = ["node1.example.com"]
worker_names = [
"node2",
"node3",
]
worker_macs = [
"52:54:00:b2:2f:86",
"52:54:00:c3:61:77",
]
worker_domains = [
"node2.example.com",
"node3.example.com",
]
# output assets dir
asset_dir = "/home/user/.secrets/clusters/mercury"
}
```
Reference the [variables docs](#variables) or the [variables.tf](https://github.com/poseidon/typhoon/blob/master/bare-metal/container-linux/kubernetes/variables.tf) source.
## ssh-agent
Initial bootstrapping requires `bootkube.service` be started on one controller node. Terraform uses `ssh-agent` to automate this step. Add your SSH private key to `ssh-agent`.
```sh
ssh-add ~/.ssh/id_rsa
ssh-add -L
```
!!! warning
`terrafrom apply` will hang connecting to a controller if `ssh-agent` does not contain the SSH key.
## Apply
Initialize the config directory if this is the first use with Terraform.
```sh
terraform init
```
Get or update Terraform modules.
```sh
$ terraform get # downloads missing modules
$ terraform get --update # updates all modules
Get: git::https://github.com/poseidon/typhoon (update)
Get: git::https://github.com/poseidon/bootkube-terraform.git?ref=v0.6.1 (update)
```
Plan the resources to be created.
```sh
$ terraform plan
Plan: 55 to add, 0 to change, 0 to destroy.
```
Apply the changes. Terraform will generate bootkube assets to `asset_dir` and create Matchbox profiles (e.g. controller, worker) and matching rules via the Matchbox API.
```sh
module.bare-metal-mercury.null_resource.copy-secrets.0: Provisioning with 'file'...
module.bare-metal-mercury.null_resource.copy-secrets.2: Provisioning with 'file'...
module.bare-metal-mercury.null_resource.copy-secrets.1: Provisioning with 'file'...
module.bare-metal-mercury.null_resource.copy-secrets.0: Still creating... (10s elapsed)
module.bare-metal-mercury.null_resource.copy-secrets.2: Still creating... (10s elapsed)
module.bare-metal-mercury.null_resource.copy-secrets.1: Still creating... (10s elapsed)
...
```
Apply will then loop until it can successfully copy credentials to each machine and start the one-time Kubernetes bootstrap service. Proceed to the next step while this loops.
!!! note ""
You may see `terraform apply` fail to `copy-secrets` if it connects before the disk install has completed. Run terraform apply until it reconciles successfully.
### Power
Power on each machine with the boot device set to `pxe` for the next boot only.
```sh
ipmitool -H node1.example.com -U USER -P PASS chassis bootdev pxe
ipmitool -H node1.example.com -U USER -P PASS power on
```
Machines will network boot, install Container Linux to disk, reboot into the disk install, and provision themselves as controllers or workers.
!!! tip ""
If this is the first test of your PXE-enabled network boot environment, watch the SOL console of a machine to spot any misconfigurations.
### Bootstrap
Wait for the `bootkube-start` step to finish bootstrapping the Kubernetes control plane. This may take 5-15 minutes depending on your network.
```
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m10s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m20s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m30s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m40s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Creation complete (ID: 5441741360626669024)
Apply complete! Resources: 55 added, 0 changed, 0 destroyed.
```
To watch the bootstrap process in detail, SSH to the first controller and journal the logs.
```
$ ssh node1.example.com
$ journalctl -f -u bootkube
bootkube[5]: Pod Status: pod-checkpointer Running
bootkube[5]: Pod Status: kube-apiserver Running
bootkube[5]: Pod Status: kube-scheduler Running
bootkube[5]: Pod Status: kube-controller-manager Running
bootkube[5]: All self-hosted control plane components successfully started
bootkube[5]: Tearing down temporary bootstrap control plane...
```
## Verify
[Install kubectl](https://coreos.com/kubernetes/docs/latest/configure-kubectl.html) on your system. Use the generated `kubeconfig` credentials to access the Kubernetes cluster and list nodes.
```
$ KUBECONFIG=/home/user/.secrets/clusters/mercury/auth/kubeconfig
$ kubectl get nodes
NAME STATUS AGE VERSION
node1.example.com Ready 11m v1.7.3+coreos.0
node2.example.com Ready 11m v1.7.3+coreos.0
node3.example.com Ready 11m v1.7.3+coreos.0
```
List the pods.
```
$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system kube-apiserver-7336w 1/1 Running 0 11m
kube-system kube-controller-manager-3271970485-b9chx 1/1 Running 0 11m
kube-system kube-controller-manager-3271970485-v30js 1/1 Running 1 11m
kube-system kube-dns-1187388186-mx9rt 3/3 Running 0 11m
kube-system kube-etcd-network-checkpointer-q24f7 1/1 Running 0 11m
kube-system kube-flannel-6qp7f 2/2 Running 1 11m
kube-system kube-flannel-gnjrm 2/2 Running 0 11m
kube-system kube-flannel-llbgt 2/2 Running 0 11m
kube-system kube-proxy-50sd4 1/1 Running 0 11m
kube-system kube-proxy-bczhp 1/1 Running 0 11m
kube-system kube-proxy-mp2fw 1/1 Running 0 11m
kube-system kube-scheduler-3895335239-fd3l7 1/1 Running 1 11m
kube-system kube-scheduler-3895335239-hfjv0 1/1 Running 0 11m
kube-system pod-checkpointer-wf65d 1/1 Running 0 11m
kube-system pod-checkpointer-wf65d-node1.example.com 1/1 Running 0 11m
```
## Going Further
Learn about [version pinning](concepts.md#versioning), maintenance, and [addons](addons.md).
!!! note
On Container Linux clusters, install the `container-linux-update-operator` addon to coordinate reboots and drains when nodes auto-update. Otherwise, updates may not be applied until the next reboot.
## Variables
### Required
| Name | Description | Example |
|:-----|:------------|:--------|
| matchbox_http_endpoint | Matchbox HTTP read-only endpoint | http://matchbox.example.com:8080 |
| container_linux_channel | Container Linux channel | stable, beta, alpha |
| container_linux_version | Container Linux version of the kernel/initrd to PXE and the image to install | 1465.6.0 |
| cluster_name | Cluster name | mercury |
| k8s_domain_name | FQDN resolving to the controller(s) nodes. Workers and kubectl will communicate with this endpoint | "myk8s.example.com" |
| ssh_authorized_key | SSH public key for ~/.ssh/authorized_keys | "ssh-rsa AAAAB3Nz..." |
| controller_names | Ordered list of controller short names | ["node1"] |
| controller_macs | Ordered list of controller identifying MAC addresses | ["52:54:00:a1:9c:ae"] |
| controller_domains | Ordered list of controller FQDNs | ["node1.example.com"] |
| worker_names | Ordered list of worker short names | ["node2", "node3"] |
| worker_macs | Ordered list of worker identifying MAC addresses | ["52:54:00:b2:2f:86", "52:54:00:c3:61:77"] |
| worker_domains | Ordered list of worker FQDNs | ["node2.example.com", "node3.example.com"] |
| asset_dir | Path to a directory where generated assets should be placed (contains secrets) | "/home/user/.secrets/clusters/mercury" |
### Optional
| Name | Description | Default | Example |
|:-----|:------------|:--------|:--------|
| cached_install | Whether machines should PXE boot from the Matchbox `/assets` cache. Admin MUST have downloaded Container Linux images into the cache to use this | false | true |
| install_disk | Disk device where Container Linux should be installed | "/dev/sda" | "/dev/sdb" |
| container_linux_oem | Specify alternative OEM image ids for the disk install | "" | "vmware_raw", "xen" |
| experimental_self_hosted_etcd | Self-host etcd as pods on Kubernetes (not recommended) | false | true |
| pod_cidr | CIDR range to assign to Kubernetes pods | "10.2.0.0/16" | "10.22.0.0/16" |
| service_cidr | CIDR range to assgin to Kubernetes services | "10.3.0.0/16" | "10.3.0.0/24" |

114
docs/concepts.md Normal file
View File

@ -0,0 +1,114 @@
# Concepts
Let's cover the concepts you'll need to get started.
## Kubernetes
[Kubernetes](https://kubernetes.io/) is an open-source cluster system for deploying, scaling, and managing containerized applications across a pool of compute nodes (bare-metal, droplets, instances).
#### Nodes
Cluster nodes provision themselves from a declarative configuration upfront. Nodes run a `kubelet` service and register themselves with the control plane to join the higher order cluster.
#### Controllers
Controller nodes are scheduled to run the Kubernetes `apiserver`, `scheduler`, `controller-manager`, `kube-dns`, and `kube-proxy`. A fully qualified domain name (e.g. cluster_name.domain.com) resolving to a network load balancer or round-robin DNS (depends on platform) is used to refer to the control plane.
#### Workers
Worker nodes register with the control plane and run application workloads. Workers, like all nodes, run `kube-proxy` and `flannel` pods.
## Terraform
Terraform config files declare *resources* that Terraform should manage. Resources include infrastructure components created through a *provider* API (e.g. Compute instances, DNS records) or local assets like TLS certificates and config files.
```tf
# Declare an instance
resource "google_compute_instance" "pet" {
# ...
}
```
The `terraform` tool parses configs, reconciles the desired state with actual state, and updates resources to reach desired state.
```sh
$ terraform plan
Plan: 4 to add, 0 to change, 0 to destroy.
$ terraform apply
Apply complete! Resources: 4 added, 0 changed, 0 destroyed.
```
With Typhoon, you'll be able to manage clusters with Terraform.
### Modules
Terraform [modules](https://www.terraform.io/docs/modules/usage.html) allow a collection of resources to be configured and managed together. Typhoon provides a Kubernetes cluster Terraform *module* for each [supported](/#modules) platform and operating system.
Clusters are declared in Terraform by referencing the module.
```tf
module "google-cloud-yavin" {
source = "git::https://github.com/poseidon/typhoon//google-cloud/container-linux/kubernetes"
cluster_name = "yavin"
...
}
```
### Versioning
Modules are updated regularly, set the version to a [release tag](https://github.com/poseidon/typhoon/releases) or [commit](https://github.com/poseidon/typhoon/commits/master) hash.
```tf
...
source = "git:https://github.com/poseidon/typhoon//google-cloud/container-linux/kubernetes?ref=v1.7.3"
```
Module versioning ensures `terraform get --update` only fetches the desired version, so plan and apply don't change cluster resources, unless the version is altered.
### Organize
Maintain Terraform configs for "live" infrastructure in a versioned repository. Seek to organize configs to reflect resources that should be managed together in a `terraform apply` invocation.
You may choose to organize resources all together, by team, by project, or some other scheme. Here's an example that manages three clusters together:
```sh
.git/
infra/
└── terraform
└── clusters
├── bare-metal-tungsten.tf
├── google-cloud-yavin.tf
├── digital-ocean-nemo.tf
├── providers.tf
├── terraform.tfvars
└── remote-backend.tf
```
By convention, `providers.tf` registers provider APIs, `terraform.tfvars` stores shared values, and state is written to a remote backend.
### State
Terraform syncs its state with provider APIs to plan changes to reconcile to the desired state. By default, Terraform writes state data (including secrets!) to a `terraform.tfstate` file. **At a minimum**, add a `.gitignore` file (or equivalent) to prevent state from being committed to your infrastructure repository.
```
# .gitignore
*.tfstate
*.tfstate.backup
.terraform/
```
### Remote Backend
Later, you may wish to checkout Terraform [remote backends](https://www.terraform.io/intro/getting-started/remote.html) which store state in a remote bucket like Google Storage or S3.
```
terraform {
backend "gcs" {
credentials = "/path/to/credentials.json"
project = "project-id"
bucket = "bucket-id"
path = "metal.tfstate"
}
}
```

245
docs/digital-ocean.md Normal file
View File

@ -0,0 +1,245 @@
# Digital Ocean
In this tutorial, we'll create a Kubernetes v1.7.3 cluster on Digital Ocean.
We'll declare a Kubernetes cluster in Terraform using the Typhoon Terraform module. On apply, firewall rules, DNS records, tags, and droplets for Kubernetes controllers and workers will be created.
Controllers and workers are provisioned to run a `kubelet`. A one-time [bootkube](https://github.com/kubernetes-incubator/bootkube) bootstrap schedules `etcd`, `apiserver`, `scheduler`, `controller-manager`, and `kube-dns` on controllers and runs `kube-proxy` and `flannel` on each node. A generated `kubeconfig` provides `kubectl` access to the cluster.
## Requirements
* Digital Ocean Account and Token
* Digital Ocean Domain (registered Domain Name or delegated subdomain)
* Terraform v0.10.1+ and [terraform-provider-ct](https://github.com/coreos/terraform-provider-ct) installed locally
## Terraform Setup
Install [Terraform](https://www.terraform.io/downloads.html) v0.10.1+ on your system.
```sh
$ terraform version
Terraform v0.10.1
```
Add the [terraform-provider-ct](https://github.com/coreos/terraform-provider-ct) plugin binary for your system.
```sh
wget https://github.com/coreos/terraform-provider-ct/releases/download/v0.2.0/terraform-provider-ct-v0.2.0-linux-amd64.tar.gz
tar xzf terraform-provider-ct-v0.2.0-linux-amd64.tar.gz
sudo mv terraform-provider-ct-v0.2.0-linux-amd64/terraform-provider-ct /usr/local/bin/
```
Add the plugin to your `~/.terraformrc`.
```
providers {
ct = "/usr/local/bin/terraform-provider-ct"
}
```
Read [concepts](concepts.md) to learn about Terraform, modules, and organizing resources. Change to your infrastructure repository (e.g. `infra`).
```
cd infra/clusters
```
## Provider
Login to [DigitalOcean](https://cloud.digitalocean.com) or create an [account](https://cloud.digitalocean.com/registrations/new), if you don't have one.
Generate a Personal Access Token with read/write scope from the [API tab](https://cloud.digitalocean.com/settings/api/tokens). Write the token to a file that can be referenced in configs.
```sh
mkdir -p ~/.config/digital-ocean
echo "TOKEN" > ~/.config/digital-ocean/token
```
Configure the DigitalOcean provider to use your token in a `providers.tf` file.
```tf
provider "digitalocean" {
token = "${chomp(file("~/.config/digital-ocean/token"))}"
}
```
## Cluster
Define a Kubernetes cluster using the module `digital-ocean/container-linux/kubernetes`.
```tf
module "digital-ocean-nemo" {
source = "git::https://github.com/poseidon/typhoon//digital-ocean/container-linux/kubernetes"
region = "nyc3"
dns_zone = "digital-ocean.example.com"
cluster_name = "nemo"
image = "coreos-stable"
controller_count = 1
controller_type = "2gb"
worker_count = 2
worker_type = "512mb"
ssh_fingerprints = ["d7:9d:79:ae:56:32:73:79:95:88:e3:a2:ab:5d:45:e7"]
# output assets dir
asset_dir = "/home/user/.secrets/clusters/nemo"
}
```
Reference the [variables docs](#variables) or the [variables.tf](https://github.com/poseidon/typhoon/blob/master/digital-ocean/container-linux/kubernetes/variables.tf) source.
## ssh-agent
Initial bootstrapping requires `bootkube.service` be started on one controller node. Terraform uses `ssh-agent` to automate this step. Add your SSH private key to `ssh-agent`.
```sh
ssh-add ~/.ssh/id_rsa
ssh-add -L
```
!!! warning
`terrafrom apply` will hang connecting to a controller if `ssh-agent` does not contain the SSH key.
## Apply
Initialize the config directory if this is the first use with Terraform.
```sh
terraform init
```
Get or update Terraform modules.
```sh
$ terraform get # downloads missing modules
$ terraform get --update # updates all modules
Get: git::https://github.com/poseidon/typhoon (update)
Get: git::https://github.com/poseidon/bootkube-terraform.git?ref=v0.6.1 (update)
```
Plan the resources to be created.
```sh
$ terraform plan
Plan: 54 to add, 0 to change, 0 to destroy.
```
Apply the changes to create the cluster.
```sh
$ terraform apply
module.digital-ocean-nemo.null_resource.bootkube-start: Still creating... (30s elapsed)
module.digital-ocean-nemo.null_resource.bootkube-start: Provisioning with 'remote-exec'...
...
module.digital-ocean-nemo.null_resource.bootkube-start: Still creating... (6m20s elapsed)
module.digital-ocean-nemo.null_resource.bootkube-start: Creation complete (ID: 7599298447329218468)
Apply complete! Resources: 54 added, 0 changed, 0 destroyed.
```
In 5-10 minutes, the Kubernetes cluster will be ready.
## Verify
[Install kubectl](https://coreos.com/kubernetes/docs/latest/configure-kubectl.html) on your system. Use the generated `kubeconfig` credentials to access the Kubernetes cluster and list nodes.
```
$ KUBECONFIG=/home/user/.secrets/clusters/nemo/auth/kubeconfig
$ kubectl get nodes
NAME STATUS AGE VERSION
10.132.110.130 Ready 10m v1.7.3+coreos.0
10.132.115.81 Ready 10m v1.7.3+coreos.0
10.132.124.107 Ready 10m v1.7.3+coreos.0
```
List the pods.
```
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system etcd-operator-3329263108-sgsbl 1/1 Running 1 11m
kube-system kube-apiserver-n10qr 1/1 Running 0 11m
kube-system kube-controller-manager-3271970485-37gtw 1/1 Running 1 11m
kube-system kube-controller-manager-3271970485-p52t5 1/1 Running 0 11m
kube-system kube-dns-1187388186-ld1j7 3/3 Running 0 11m
kube-system kube-etcd-0000 1/1 Running 0 9m
kube-system kube-etcd-network-checkpointer-n9xsk 1/1 Running 0 11m
kube-system kube-flannel-1cq1v 2/2 Running 0 11m
kube-system kube-flannel-hq9t0 2/2 Running 1 11m
kube-system kube-flannel-v0g9w 2/2 Running 0 11m
kube-system kube-proxy-6kxjf 1/1 Running 0 11m
kube-system kube-proxy-fh3td 1/1 Running 0 11m
kube-system kube-proxy-k35rc 1/1 Running 0 11m
kube-system kube-scheduler-3895335239-2bc4c 1/1 Running 0 11m
kube-system kube-scheduler-3895335239-b7q47 1/1 Running 1 11m
kube-system pod-checkpointer-pr1lq 1/1 Running 0 11m
kube-system pod-checkpointer-pr1lq-10.132.115.81 1/1 Running 0 10m
```
## Going Further
Learn about [version pinning](concepts.md#versioning), maintenance, and common [addons](addons.md).
!!! note
On Container Linux clusters, install the `container-linux-update-operator` addon to coordinate reboots and drains when nodes auto-update. Otherwise, updates may not be applied until the next reboot.
## Variables
### Required
| Name | Description | Example |
|:-----|:------------|:--------|
| cluster_name | Unique cluster name (prepended to dns_zone) | nemo |
| region | Digital Ocean region | nyc1, sfo2, fra1, tor1 |
| dns_zone | Digital Ocean domain (i.e. DNS zone) | do.example.com |
| ssh_fingerprints | SSH public key fingerprints | ["d7:9d..."] |
| asset_dir | Path to a directory where generated assets should be placed (contains secrets) | /home/user/.secrets/nemo |
#### DNS Zone
Clusters create DNS A records `${cluster_name}.${dns_zone}` to resolve to controller droplets (round robin). This FQDN is used by workers and `kubectl` to access the apiserver. In this example, the cluster's apiserver would be accessible at `nemo.do.example.com`.
You'll need a registered domain name or subdomain registered in Digital Ocean Domains (i.e. DNS zones). You can set this up once and create many clusters with unqiue names.
```tf
resource "digitalocean_domain" "zone-for-clusters" {
name = "do.example.com"
# Digital Ocean oddly requires an IP here. You may have to delete the A record it makes. :(
ip_address = "8.8.8.8"
}
```
!!! tip ""
If you have an existing domain name with a zone file elsewhere, just carve out a subdomain that can be managed on DigitalOcean (e.g. do.mydomain.com) and [update nameservers](https://www.digitalocean.com/community/tutorials/how-to-set-up-a-host-name-with-digitalocean).
#### SSH Fingerprints
DigitalOcean droplets are created with your SSH public key "fingerprint" (i.e. MD5 hash) to allow access. If your SSH public key is at `~/.ssh/id_rsa`, find the fingerprint with,
```bash
ssh-keygen -lf ~/.ssh/id_rsa.pub | awk '{print $2}'
d7:9d:79:ae:56:32:73:79:95:88:e3:a2:ab:5d:45:e7
```
If you use `ssh-agent` (e.g. Yubikey for SSH), find the fingerprint with,
```
ssh-add -l -E md5
2048 MD5:d7:9d:79:ae:56:32:73:79:95:88:e3:a2:ab:5d:45:e7 cardno:000603633110 (RSA)
```
If you uploaded an SSH key to DigitalOcean (not required), find the fingerprint under Settings -> Security. Finally, if you don't have an SSH key, [create one now](https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/).
### Optional
| Name | Description | Default | Example |
|:-----|:------------|:--------|:--------|
| image | OS image for droplets | "coreos-stable" | coreos-stable, coreos-beta, coreos-alpha |
| controller_count | Number of controllers (i.e. masters) | 1 | 1 |
| controller_type | Digital Ocean droplet size | 2gb | 2gb (min), 4gb, 8gb |
| worker_count | Number of workers | 1 | 3 |
| worker_type | Digital Ocean droplet size | 512mb | 512mb, 1gb, 2gb, 4gb |
| pod_cidr | CIDR range to assign to Kubernetes pods | "10.2.0.0/16" | "10.22.0.0/16" |
| service_cidr | CIDR range to assgin to Kubernetes services | "10.3.0.0/16" | "10.3.0.0/24" |
!!! warning
Do not choose a `controller_type` smaller than `2gb`. The `1gb` droplet is not sufficient for running a controller and bootstrapping will fail.

30
docs/faq.md Normal file
View File

@ -0,0 +1,30 @@
# FAQ
## Terraform?
Typhoon provides a Terraform Module for each supported operating system and platform. Terraform is considered a *format* detail, much like a Linux distro might provide images in the qcow2 or ISO format. It is a mechanism for sharing Typhoon in a way that works for many users.
Formats rise and evolve. Typhoon may choose to adapt the format over time (with lots of forewarning). However, the authors' have built several Kubernetes "distros" before and learned from mistakes - Terraform modules are the right format for now.
## Self-hosted etcd
Typhoon clusters on cloud providers run etcd as "self-hosted" pods, managed by the [etcd-operator](https://github.com/coreos/etcd-operator). By contrast, Typhoon bare-metal runs an etcd peer as a systemd `etcd-member.service` on each controller (i.e. on-host).
In practice, self-hosted etcd has proven to be *ok*, but not ideal. Running the apiserver's etcd atop Kubernetes itself is inherently complex, but works suitably in most cases. It can be opaque to debug if complex edge cases with upstream Kubernetes bugs arise.
!!! note ""
Typhoon clusters and their defaults power the maintainers' clusters. The edge cases are sufficiently rare that self-hosted etcd is not a pressing issue, but cloud clusters may switch back to on-host etcd in the future.
## Operating Systems
Only Container Linux is supported currently. This just due to operational familiarity, rather than intentional exclusion. It's important that another operating system be added, to reduce the risk of making narrowly-scoped design decisions.
Fedora Cloud will likely be next.
## Maintainers
Typhoon clusters are Kubernetes configurations the maintainers use in real-world, production clusters.
* Maintainers must personally operate a bare-metal and cloud provider cluster and strive to exercise it in real-world scenarios
We merge features that are along the "blessed path". We minimize options to reduce complexity and matrix size. We remove outdated materials to reduce sprawl. "Skate where the puck is going", but also "wait until the fit is right". No is temporary, yes is forever.

241
docs/google-cloud.md Normal file
View File

@ -0,0 +1,241 @@
# Google Cloud
In this tutorial, we'll create a Kubernetes v1.7.3 cluster on Google Compute Engine (not GKE).
We'll declare a Kubernetes cluster in Terraform using the Typhoon Terraform module. On apply, a network, firewall rules, managed instance groups of Kubernetes controllers and workers, network load balancers for controllers and workers, and health checks will be created.
Controllers and workers are provisioned to run a `kubelet`. A one-time [bootkube](https://github.com/kubernetes-incubator/bootkube) bootstrap schedules `etcd`, `apiserver`, `scheduler`, `controller-manager`, and `kube-dns` on controllers and runs `kube-proxy` and `flannel` on each node. A generated `kubeconfig` provides `kubectl` access to the cluster.
## Requirements
* Google Cloud Account and Service Account
* Google Cloud DNS Zone (registered Domain Name or delegated subdomain)
* Terraform v0.9.2+ and [terraform-provider-ct](https://github.com/coreos/terraform-provider-ct) installed locally
## Terraform Setup
Install [Terraform](https://www.terraform.io/downloads.html) v0.9.2+ on your system.
```sh
$ terraform version
Terraform v0.10.1
```
Add the [terraform-provider-ct](https://github.com/coreos/terraform-provider-ct) plugin binary for your system.
```sh
wget https://github.com/coreos/terraform-provider-ct/releases/download/v0.2.0/terraform-provider-ct-v0.2.0-linux-amd64.tar.gz
tar xzf terraform-provider-ct-v0.2.0-linux-amd64.tar.gz
sudo mv terraform-provider-ct-v0.2.0-linux-amd64/terraform-provider-ct /usr/local/bin/
```
Add the plugin to your `~/.terraformrc`.
```
providers {
ct = "/usr/local/bin/terraform-provider-ct"
}
```
Read [concepts](concepts.md) to learn about Terraform, modules, and organizing resources. Change to your infrastructure repository (e.g. `infra`).
```
cd infra/clusters
```
## Provider
Login to your Google Console [API Manager](https://console.cloud.google.com/apis/dashboard) and select a project, or [signup](https://cloud.google.com/free/) if you don't have an account.
Select "Credentials", and create service account key credentials. Choose the "Compute Engine default service account" and save the JSON private key to a file that can be referenced in configs.
```sh
mv ~/Downloads/project-id-43048204.json ~/.config/google-cloud/terraform.json
```
Configure the Google Cloud provider to use your service account key, project-id, and region in a `providers.tf` file.
```tf
provider "google" {
credentials = "${file("~/.config/google-cloud/terraform.json")}"
project = "project-id"
region = "us-central1"
}
```
Additional configuration options are described in the `google` provider [docs](https://www.terraform.io/docs/providers/google/index.html).
!!! tip
A project may contain multiple clusters if you wish. Regions are listed in [docs](https://cloud.google.com/compute/docs/regions-zones/regions-zones) or with `gcloud compute regions list`.
## Cluster
Define a Kubernetes cluster using the module `google-cloud/container-linux/kubernetes`.
```tf
module "google-cloud-yavin" {
source = "git::https://github.com/poseidon/typhoon//google-cloud/container-linux/kubernetes"
# Google Cloud
zone = "us-central1-c"
dns_zone = "example.com"
dns_zone_name = "example-zone"
os_image = "coreos-stable-1465-6-0-v20170817"
cluster_name = "yavin"
controller_count = 1
worker_count = 2
ssh_authorized_key = "ssh-rsa AAAAB3Nz..."
# output assets dir
asset_dir = "/home/user/.secrets/clusters/yavin"
}
```
Reference the [variables docs](#variables) or the [variables.tf](https://github.com/poseidon/typhoon/blob/master/google-cloud/container-linux/kubernetes/variables.tf) source.
## ssh-agent
Initial bootstrapping requires `bootkube.service` be started on one controller node. Terraform uses `ssh-agent` to automate this step. Add your SSH private key to `ssh-agent`.
```sh
ssh-add ~/.ssh/id_rsa
ssh-add -L
```
!!! warning
`terrafrom apply` will hang connecting to a controller if `ssh-agent` does not contain the SSH key.
## Apply
Initialize the config directory if this is the first use with Terraform.
```sh
terraform init
```
Get or update Terraform modules.
```sh
$ terraform get # downloads missing modules
$ terraform get --update # updates all modules
Get: git::https://github.com/poseidon/typhoon (update)
Get: git::https://github.com/poseidon/bootkube-terraform.git?ref=v0.6.1 (update)
```
Plan the resources to be created.
```sh
$ terraform plan
Plan: 64 to add, 0 to change, 0 to destroy.
```
Apply the changes to create the cluster.
```sh
$ terraform apply
module.google-cloud-yavin.null_resource.bootkube-start: Still creating... (10s elapsed)
...
module.google-cloud-yavin.null_resource.bootkube-start: Still creating... (8m30s elapsed)
module.google-cloud-yavin.null_resource.bootkube-start: Still creating... (8m40s elapsed)
module.google-cloud-yavin.null_resource.bootkube-start: Creation complete (ID: 5768638456220583358)
Apply complete! Resources: 64 added, 0 changed, 0 destroyed.
```
In 5-10 minutes, the Kubernetes cluster will be ready.
## Verify
[Install kubectl](https://coreos.com/kubernetes/docs/latest/configure-kubectl.html) on your system. Use the generated `kubeconfig` credentials to access the Kubernetes cluster and list nodes.
```
$ KUBECONFIG=/home/user/.secrets/clusters/yavin/auth/kubeconfig
$ kubectl get nodes
NAME STATUS AGE VERSION
yavin-controller-1682.c.example-com.internal Ready 6m v1.7.3+coreos.0
yavin-worker-jrbf.c.example-com.internal Ready 5m v1.7.3+coreos.0
yavin-worker-mzdm.c.example-com.internal Ready 5m v1.7.3+coreos.0
```
List the pods.
```
$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system etcd-operator-3329263108-f443m 1/1 Running 1 6m
kube-system kube-apiserver-zppls 1/1 Running 0 6m
kube-system kube-controller-manager-3271970485-gh9kt 1/1 Running 0 6m
kube-system kube-controller-manager-3271970485-h90v8 1/1 Running 1 6m
kube-system kube-dns-1187388186-zj5dl 3/3 Running 0 6m
kube-system kube-etcd-0000 1/1 Running 0 5m
kube-system kube-etcd-network-checkpointer-crznb 1/1 Running 0 6m
kube-system kube-flannel-1cs8z 2/2 Running 0 6m
kube-system kube-flannel-d1l5b 2/2 Running 0 6m
kube-system kube-flannel-sp9ps 2/2 Running 0 6m
kube-system kube-proxy-117v6 1/1 Running 0 6m
kube-system kube-proxy-9886n 1/1 Running 0 6m
kube-system kube-proxy-njn47 1/1 Running 0 6m
kube-system kube-scheduler-3895335239-5x87r 1/1 Running 0 6m
kube-system kube-scheduler-3895335239-bzrrt 1/1 Running 1 6m
kube-system pod-checkpointer-l6lrt 1/1 Running 0 6m
```
## Going Further
Learn about [version pinning](concepts.md#versioning), maintenance, and [addons](addons.md).
!!! note
On Container Linux clusters, install the `container-linux-update-operator` addon to coordinate reboots and drains when nodes auto-update. Otherwise, updates may not be applied until the next reboot.
## Variables
### Required
| Name | Description | Example |
|:-----|:------------|:--------|
| cluster_name | Unique cluster name (prepended to dns_zone) | "yavin" |
| zone | Google Cloud zone | "us-central1-f" |
| dns_zone | Google Cloud DNS zone | "google-cloud.example.com" |
| dns_zone_name | Google Cloud DNS zone name | "example-zone" |
| ssh_authorized_key | SSH public key for ~/.ssh_authorized_keys | "ssh-rsa AAAAB3NZ..." |
| os_image | OS image for compute instances | "coreos-stable-1465-6-0-v20170817" |
| asset_dir | Path to a directory where generated assets should be placed (contains secrets) | "/home/user/.secrets/clusters/yavin" |
Check the list of valid [zones](https://cloud.google.com/compute/docs/regions-zones/regions-zones) and list Container Linux [images](https://cloud.google.com/compute/docs/images) with `gcloud compute images list | grep coreos`.
#### DNS Zone
Clusters create a DNS A record `${cluster_name}.${dns_zone}` to resolve a network load balancer backed by controller instances. This FQDN is used by workers and `kubectl` to access the apiserver. In this example, the cluster's apiserver would be accessible at `yavin.google-cloud.example.com`.
You'll need a registered domain name or subdomain registered in a Google Cloud DNS zone. You can set this up once and create many clusters with unqiue names.
```tf
resource "google_dns_managed_zone" "zone-for-clusters" {
dns_name = "google-cloud.example.com."
name = "example-zone"
description = "Production DNS zone"
}
```
!!! tip ""
If you have an existing domain name with a zone file elsewhere, just carve out a subdomain that can be managed on Google Cloud (e.g. google-cloud.mydomain.com) and [update nameservers](https://cloud.google.com/dns/update-name-servers).
### Optional
| Name | Description | Default | Example |
|:-----|:------------|:--------|:--------|
| machine_type | Machine type for compute instances | "n1-standard-1" | See below |
| controller_count | Number of controllers (i.e. masters) | 1 | 1 |
| worker_count | Number of workers | 1 | 3 |
| worker_preemptible | If enabled, Compute Engine will terminate controllers randomly within 24 hours | false | true |
| pod_cidr | CIDR range to assign to Kubernetes pods | "10.2.0.0/16" | "10.22.0.0/16" |
| service_cidr | CIDR range to assgin to Kubernetes services | "10.3.0.0/16" | "10.3.0.0/24" |
Check the list of valid [machine types](https://cloud.google.com/compute/docs/machine-types).
#### Preemption
Add `worker_premeptible = "true"` to allow worker nodes to be [preempted](https://cloud.google.com/compute/docs/instances/preemptible) at random, but pay [significantly](https://cloud.google.com/compute/pricing) less. Clusters tolerate stopping instances fairly well (reschedules pods, but cannot drain) and preemption provides a nice reward for running fault-tolerant cluster systems.`

BIN
docs/img/favicon.ico Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 361 KiB

BIN
docs/img/spin.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

1
docs/img/spin.svg Normal file
View File

@ -0,0 +1 @@
<?xml version="1.0" ?><svg enable-background="new 0 0 100 100" version="1.1" viewBox="0 0 100 100" xml:space="preserve" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g id="Merged"><g><path d="M91.532,51.789c0.988-1.976,0.187-4.379-1.789-5.367L65.272,34.186c-2.099-2.028-4.599-3.642-7.369-4.712l22.729-7.576 c-0.698-2.096-2.964-3.229-5.059-2.53l-25.924,8.641c-3.048,0.048-5.946,0.719-8.575,1.891L51.789,8.468 c-1.976-0.988-4.379-0.187-5.367,1.789L34.186,34.728c-2.028,2.099-3.642,4.599-4.712,7.369l-7.576-22.729 c-2.096,0.698-3.229,2.964-2.53,5.059l8.641,25.924c0.048,3.048,0.719,5.946,1.891,8.575L8.468,48.211 c-0.988,1.976-0.187,4.379,1.789,5.367l24.471,12.236c2.099,2.028,4.599,3.642,7.369,4.712l-22.729,7.576 c0.698,2.096,2.964,3.229,5.059,2.53l25.924-8.641c3.048-0.048,5.946-0.719,8.575-1.891L48.211,91.532 c1.976,0.988,4.379,0.187,5.367-1.789l12.236-24.471c2.028-2.099,3.642-4.599,4.712-7.369l7.576,22.729 c2.096-0.698,3.229-2.964,2.53-5.06l-8.641-25.924c-0.048-3.048-0.719-5.946-1.891-8.575L91.532,51.789z M50,68 c-9.925,0-18-8.075-18-18s8.075-18,18-18s18,8.075,18,18S59.925,68,50,68z"/><path d="M50,38c-6.617,0-12,5.383-12,12s5.383,12,12,12s12-5.383,12-12S56.617,38,50,38z M50,58c-4.411,0-8-3.589-8-8s3.589-8,8-8 s8,3.589,8,8S54.411,58,50,58z"/></g></g></svg>

After

Width:  |  Height:  |  Size: 1.3 KiB

118
docs/index.md Normal file
View File

@ -0,0 +1,118 @@
# Typhoon <img align="right" src="https://storage.googleapis.com/dghubble/spin.png">
Typhoon is a minimal and free Kubernetes distribution.
* Minimal, stable base Kubernetes distribution
* Declarative infrastructure and configuration
* [Free](#social-contract) (freedom and cost) and privacy-respecting
* Practical for labs, datacenters, and clouds
Typhoon distributes upstream Kubernetes, architectural conventions, and cluster addons, much like a GNU/Linux distribution provides the Linux kernel and userspace components.
## Features
* Kubernetes v1.7.3 (upstream, via [kubernetes-incubator/bootkube](https://github.com/kubernetes-incubator/bootkube))
* Self-hosted control plane, single or multi master, workloads isolated to workers
* On-cluster etcd with TLS, [RBAC](https://kubernetes.io/docs/admin/authorization/rbac/)-enabled
* Ready for Ingress, Metrics, Dashboards, and other optional [addons](addons/overview.md)
* Provided via Terraform Modules
## Modules
Typhoon provides a Terraform Module for each supported operating system and platform.
| Platform | Operating System | Terraform Module | Status |
|---------------|------------------|------------------|--------|
| Bare-Metal | Container Linux | [bare-metal/container-linux/kubernetes](bare-metal.md) | production |
| Digital Ocean | Container Linux | [digital-ocean/container-linux/kubernetes](digital-ocean.md) | beta |
| Google Cloud | Container Linux | [google-cloud/container-linux/kubernetes](google-cloud.md) | production |
## Usage
* [Concepts](concepts.md)
* Tutorials
* [Bare-Metal](bare-metal.md)
* [Digital Ocean](digital-ocean.md)
* [Google-Cloud](google-cloud.md)
## Example
Define a Kubernetes cluster by using the Terraform module for your chosen platform and operating system. Here's a minimal example.
```tf
module "google-cloud-yavin" {
source = "git::https://github.com/poseidon/typhoon//google-cloud/container-linux/kubernetes"
# Google Cloud
zone = "us-central1-c"
dns_zone = "example.com"
dns_zone_name = "example-zone"
os_image = "coreos-stable-1465-6-0-v20170817"
cluster_name = "yavin"
controller_count = 1
worker_count = 2
ssh_authorized_key = "ssh-rsa AAAAB3Nz..."
# output assets dir
asset_dir = "/home/user/.secrets/clusters/yavin"
}
```
Fetch modules, plan the changes to be made, and apply the changes.
```sh
$ terraform get --update
$ terraform plan
Plan: 64 to add, 0 to change, 0 to destroy.
$ terraform apply
Apply complete! Resources: 64 added, 0 changed, 0 destroyed.
```
In 5-10 minutes (varies by platform), the cluster will be ready. This Google Cloud example creates a `yavin.example.com` DNS record to resolve to a network load balancer across controller nodes.
```
$ KUBECONFIG=/home/user/.secrets/clusters/yavin/auth/kubeconfig
$ kubectl get nodes
NAME STATUS AGE VERSION
yavin-controller-1682.c.example-com.internal Ready 6m v1.7.3+coreos.0
yavin-worker-jrbf.c.example-com.internal Ready 5m v1.7.3+coreos.0
yavin-worker-mzdm.c.example-com.internal Ready 5m v1.7.3+coreos.0
```
List the default pods.
```
$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system etcd-operator-3329263108-f443m 1/1 Running 1 6m
kube-system kube-apiserver-zppls 1/1 Running 0 6m
kube-system kube-controller-manager-3271970485-gh9kt 1/1 Running 0 6m
kube-system kube-controller-manager-3271970485-h90v8 1/1 Running 1 6m
kube-system kube-dns-1187388186-zj5dl 3/3 Running 0 6m
kube-system kube-etcd-0000 1/1 Running 0 5m
kube-system kube-etcd-network-checkpointer-crznb 1/1 Running 0 6m
kube-system kube-flannel-1cs8z 2/2 Running 0 6m
kube-system kube-flannel-d1l5b 2/2 Running 0 6m
kube-system kube-flannel-sp9ps 2/2 Running 0 6m
kube-system kube-proxy-117v6 1/1 Running 0 6m
kube-system kube-proxy-9886n 1/1 Running 0 6m
kube-system kube-proxy-njn47 1/1 Running 0 6m
kube-system kube-scheduler-3895335239-5x87r 1/1 Running 0 6m
kube-system kube-scheduler-3895335239-bzrrt 1/1 Running 1 6m
kube-system pod-checkpointer-l6lrt 1/1 Running 0 6m
```
## Background
Typhoon powers the author's cloud and colocation clusters. The project has evolved through operational experience and Kubernetes changes. Typhoon is shared under a free license to allow others to use the work freely and contribute to its upkeep.
Typhoon addresses real world needs, which you may share. It is honest about limitations or areas that aren't mature yet. It avoids buzzword bingo and hype. It does not aim to be the one-solution-fits-all distro. An ecosystem of free (or enterprise) Kubernetes distros is healthy.
## Social Contract
Typhoon is not a product, trial, or free-tier. It is not run by a company, does not offer support or services, and does not accept or make any money. It is not associated with any operating system or platform vendor.
Typhoon clusters will contain only [free](https://www.debian.org/intro/free) components. Cluster components will not collect data on users without their permission.
*Disclosure: The author works for CoreOS and previously wrote Matchbox and original Tectonic for bare-metal and AWS. This project is not associated with CoreOS.*

55
mkdocs.yml Normal file
View File

@ -0,0 +1,55 @@
site_name: Typhoon
theme: material
site_favicon: 'img/favicon.ico'
repo_name: 'poseidon/typhoon'
repo_url: 'https://github.com/poseidon/typhoon'
extra:
palette:
primary: 'blue'
accent: 'light blue'
logo: 'img/spin.png'
font:
text: 'Roboto Slab'
code: 'Roboto Mono'
social:
- type: 'github'
link: 'https://github.com/poseidon'
- type: 'twitter'
link: 'https://twitter.com/typhoon8s'
google_analytics:
- 'UA-38995133-6'
- 'auto'
markdown_extensions:
- admonition
- codehilite
- footnotes
- toc(permalink=true)
- pymdownx.arithmatex
- pymdownx.betterem(smart_enable=all)
- pymdownx.caret
- pymdownx.critic
- pymdownx.emoji:
emoji_generator: !!python/name:pymdownx.emoji.to_svg
- pymdownx.inlinehilite
- pymdownx.magiclink
- pymdownx.mark
- pymdownx.smartsymbols
- pymdownx.superfences
- pymdownx.tasklist(custom_checkbox=true)
- pymdownx.tilde
pages:
- Home: 'index.md'
- 'Concepts': 'concepts.md'
- 'Bare-Metal': 'bare-metal.md'
- 'Digital Ocean': 'digital-ocean.md'
- 'Google Cloud': 'google-cloud.md'
- 'Addons':
- 'Overview': 'addons/overview.md'
- 'Ingress Controller': 'addons/ingress.md'
- 'Network Policy': 'addons/calico.md'
- 'Heapster': 'addons/heapster.md'
- 'Dashboard': 'addons/dashboard.md'
- 'CLUO': 'addons/cluo.md'
- 'FAQ': 'faq.md'
- 'Advanced':
- 'Customization': 'advanced/customization.md'

4
requirements.txt Normal file
View File

@ -0,0 +1,4 @@
mkdocs==0.16.3
mkdocs-material==1.8.0
pygments==2.2.0
pymdown-extensions==3.5