Compare commits

...

42 Commits

Author SHA1 Message Date
Teddy Cornaut 92b8541fa2 Suppression des addInt qui empechent d'utiliser le dico dans zephir 2019-11-21 14:03:46 -05:00
Teddy Cornaut 9bfa3a41f5 Ajout conf sysctl 2019-04-11 11:25:40 +02:00
Teddy Cornaut 1ca2797bb3 Ajout service redis slave 2019-03-19 14:57:52 +01:00
Emmanuel Garette f899c6516c remove redis2-server 2019-03-05 10:34:22 +01:00
Emmanuel Garette f7ce4d51d6 corrections 2019-03-04 17:26:33 +01:00
Teddy Cornaut ae562d6a60 Fix init 2019-02-14 11:55:13 +01:00
Teddy Cornaut c568646a7d Fix variable redisMaxMemory dans conf 2018-09-06 09:23:44 +02:00
Teddy Cornaut c26de6593e Cluster non présent par défaut sur les slaves + desactivation des sauvegardes auto RDB et AOF 2018-09-04 16:51:12 +02:00
Teddy Cornaut e164823580 Correction du mode local avec slave distant 2018-09-04 15:57:54 +02:00
Teddy Cornaut 15dbc98eb8 Ajout du mode local avec slave distant 2018-09-04 10:47:54 +02:00
Philippe Caseiro dc5fc136c8 Fix typo 2018-06-26 10:33:12 +02:00
Philippe Caseiro 23d8921d16 Adding maxclients support 2018-06-25 22:20:33 +02:00
Philippe Caseiro 07e64177f1 Disable Transparent Huge Page support 2018-06-21 10:38:16 +02:00
Philippe Caseiro 56a630eadb Fixing typo in dico 2018-06-21 10:14:46 +02:00
Philippe Caseiro ccc8629b8e Adding Possibility to disable persistence on Master instances 2018-06-21 10:02:34 +02:00
Philippe Caseiro 0c0202ba87 Adding somme tunning for better slave sync 2018-06-21 08:58:25 +02:00
Philippe Caseiro 2081ae6d7f Adding vm.overcommit_memory kernel parameter 2018-06-13 09:42:28 +02:00
Philippe Caseiro fad3a3febf Hidding variable not usable in with Node Rôle 2018-05-15 13:57:34 +02:00
Philippe Caseiro 4a5a5aaaf5 Hidding variable not usable in with Node Rôle 2018-05-15 13:53:31 +02:00
Philippe Caseiro 8116d52056 Fixing pid file name 2018-05-15 13:32:36 +02:00
Philippe Caseiro 7c96525042 Addin Service file for the second instance 2018-05-15 12:19:57 +02:00
Philippe Caseiro 2031ec7d64 Adding support for a second instance !
Redis cluster needs 6 hosts for work ... it's a lot.
To trick him each node can be Master and slave for another node.

;)
2018-05-15 12:17:25 +02:00
Philippe Caseiro 36b8982e25 Improving cluster init script 2018-05-15 00:09:46 +02:00
Philippe Caseiro d61a45ed24 We need to open en Cluster port ... redis port + 10000 2018-05-14 22:56:26 +02:00
Philippe Caseiro f40cbe1e37 Adding a working init script !!! 2018-05-14 21:56:00 +02:00
Philippe Caseiro 095d6d5828 Fixing bad service name 2018-05-14 21:55:43 +02:00
Philippe Caseiro ed84a3566b Using eth0 IP instead of 127.0.0.1 2018-05-14 16:20:19 +02:00
Philippe Caseiro dfbd242639 Enable cluster mode for nodes and leader 2018-05-14 16:04:47 +02:00
Philippe Caseiro a327f0e74b Open redis to other hosts 2018-05-14 15:44:55 +02:00
Philippe Caseiro 90acea3043 Hidding variables on 'Node' Mode 2018-05-14 15:08:32 +02:00
Philippe Caseiro e8d3fcd104 Removing missing variable from template 2018-05-14 15:03:50 +02:00
Philippe Caseiro 5ef8fd5b36 Removing unused configuration and assocated variables 2018-05-14 15:01:24 +02:00
Philippe Caseiro 595cf135a4 Fix configuration and dico 2018-05-14 14:50:56 +02:00
Philippe Caseiro 937d0f5ce9 Removing non working script (moved to a branch) 2018-05-14 12:25:52 +02:00
Philippe Caseiro 373275a8fc Using redis-trib.rb because it works ... 2018-05-14 12:21:55 +02:00
Philippe Caseiro c6fb12c816 Adding the script 2018-05-11 17:03:42 +02:00
Philippe Caseiro 7d059ce03b Adding init script for cluster start 2018-05-11 17:03:20 +02:00
Philippe Caseiro 9ad47896a5 Adding the Leader to the cluster.conf 2018-05-11 15:38:13 +02:00
Philippe Caseiro 325e51b0cf Adding cluster.conf template 2018-05-11 15:26:51 +02:00
Philippe Caseiro 7e886ddca5 Adding cluster.conf template 2018-05-11 15:26:21 +02:00
Philippe Caseiro 74dec50107 rdClMemberIP is a Multi 2018-05-11 15:14:11 +02:00
Philippe Caseiro 1ddc6ffb2f Gestion des noeuds membres 2018-05-11 15:03:44 +02:00
8 changed files with 1384 additions and 240 deletions

11
creolefuncs/redis.py Normal file
View File

@ -0,0 +1,11 @@
# -*- coding: utf-8 -*-
#
# just add 2 numbers ...
#
def add(num1, num2):
return str(int(num1) + int(num2)).decode("utf-8")
def intAdd(num1, num2):
return int(num1) + int(num2)

View File

@ -2,12 +2,20 @@
<creole>
<files>
<!-- System configuration -->
<file filelist='redis' name='/etc/sysctl.d/100-redis-tuning.conf' source='redis_sysctl.conf' mkdir='True' rm='True'/>
<file filelist='redis' name='/etc/redis/redis.conf' mkdir='True' rm='True'/>
<file filelist='redisSlave' name='/etc/redis/redis-slave.conf' mkdir='True' rm='True'/>
<file filelist='redisCl' name='/etc/redis/cluster.conf' source='redis-cluster.conf' mkdir='True' rm='True'/>
<service servicelist="svredis">redis-server</service>
<service servicelist="svredisSlave">redis2-server</service>
<service_access service='redis-server'>
<port service_accesslist='saRedis' protocol='tcp' port_type='SymLinkOption'>redisPort</port>
<port service_accesslist='saRedis' protocol='tcp' port_type='SymLinkOption'>redisClPort</port>
<port service_accesslist='saRedisSlave' protocol='tcp' port_type='SymLinkOption'>redisPortSlave</port>
<port service_accesslist='saRedisSlave' protocol='tcp' port_type='SymLinkOption'>redisClPortSlave</port>
<tcpwrapper>redis-server</tcpwrapper>
</service_access>
<service_restriction service='ead_web'>
<service_restriction service='redis-server'>
<ip interface='auto' netmask='rdClmask' netmask_type='SymLinkOption' ip_type='SymLinkOption'>rdClIP</ip>
</service_restriction>
</files>
@ -21,9 +29,16 @@
<variable name='redisMode' type='string' description="Mode d'utilisation de Redis">
<value>Local</value>
</variable>
<variable name='redisPort' type='string' description="Port d'écoute du service Redis">
<value>6379</value>
</variable>
<variable name='redisSlaveInstance' type='oui/non' description="Voulez-vous lancer une instance esclave Redis sur ce serveur ?">
<value>non</value>
</variable>
<!-- Instance Principale-->
<variable name='redisInstanceName' type='string' description="Nom de l'instance principale"/>
<variable name='redisPort' type='number' description="Port d'écoute du service Redis">
<value>6379</value>
</variable>
<variable name='redisClPort' type='number' description="Port d'écoute du service Cluster Redis"/>
<variable name='redisMaxMemory' type='number' description="Quantité de mémoire utilisable par Redis en Mo">
<value>512</value>
</variable>
@ -33,21 +48,73 @@
<variable name='redisTCPKeepAlive' type='number' description="Intervalle entre le dernier envoi de paquet TCP et la réponse ACK (en secondes)">
<value>60</value>
</variable>
<!-- Instance Secondaire -->
<variable name='redisSlaveInstanceName' type='string' description="Nom de l'instance secondaire"/>
<variable name='redisSlaveInstanceMaster' type='string' description="Nom du noeud a répliquer sur l'instance secondaire"/>
<variable name='redisMasterIPSlave' type='domain' description="Nom de domaine du service Redis master" mandatory="True"/>
<variable name='redisMasterPortSlave' type='number' description="Port d'écoute du service Redis master">
<value>6379</value>
</variable>
<variable name='redisPortSlave' type='number' description="Port d'écoute du service Redis slave">
<value>8379</value>
</variable>
<variable name='redisClPortSlave' type='number' description="Port d'écoute du service Cluster Redis"/>
<variable name='redisMaxMemorySlave' type='number' description="Quantité de mémoire utilisable par Redis en Mo">
<value>512</value>
</variable>
<variable name='redisMemoryPolicySlave' type='string' description='Méthode de libération de mémoire lorsque la maximum est atteint '>
<value>noeviction</value>
</variable>
<variable name='redisTCPKeepAliveSlave' type='number' description="Intervalle entre le dernier envoi de paquet TCP et la réponse ACK (en secondes)">
<value>60</value>
</variable>
<!-- Autorisations d'accès -->
<variable name='rdClIP' type='ip' description="Adresse IP réseau autorisée a utiliser le service Redis" multi='True'/>
<variable name='rdClmask' type='ip' description="Masque de sous réseau"/>
<!-- Cluster configration Part -->
<variable name='redisRole' type='string' description="Role du serveur Redis">
<value>Leader</value>
</variable>
<variable name='redisMasterIP' type='ip' description="Adresse IP du Leader Redis"/>
<variable name='redisMasterPort' type='number' description="Port d'écoute du Leader Redis"/>
<variable name='redisMasterPassword' type='string' description="Passphrase d'accès à la grappe Redis"/>
<variable name='rdClMember' type='string' description="Nom du noeud" multi='True'/>
<variable name='rdClMemberIP' type='ip' description="Adresse IP du noeud" multi='True'/>
<variable name='rdClMemberPort' type='number' description="Port d'écoute du noeud" multi='True'>
<value>6379</value>
</variable>
<variable name='rdClMemberRole' type='ip' description="Rôle du membre"/>
<variable name='rdClMemberMaster' type='string' description="Nom du neoud a répliquer sur ce membre"/>
<variable name='rdClMemberAsSlave' type='oui/non' description="Ce noeud dispose de 2 instances ?">
<value>non</value>
</variable>
<variable name='rdClMemberSlaveName' type='string' description="Nom de l'instance secondaire"/>
<variable name='rdClMemberSlaveIP' type='ip' description="IP de l'instance secondaire"/>
<variable name='rdClMemberSlavePort' type='number' description="Port de l'instance secondaire"/>
<variable name='rdClMemberSlaveRole' type='string' description="Rôle de l'instance secondaire" hidden='True'/>
<variable name='rdClMemberSlaveMaster' type='string' description="Noeud du noeud répliquer sur cette instance secondaire"/>
</family>
<family name='Redis tunning' mode='expert'>
<variable name='redisMaxClients' type='number' description="Maximum allowed clients">
<value>10000</value>
</variable>
<variable name='rdCliOutBuffHardLimit' type='number' description="Client output buffer hard limit (for slave)">
<value>512</value>
</variable>
<variable name='rdCliOutBuffSoftLimit' type='number' description="Client output buffer soft limit (for slave)">
<value>256</value>
</variable>
<variable name='rdSaveDisable' type='oui/non' description="Désactiver la persistence des données sur les maitres et esclaves">
<value>non</value>
</variable>
<variable name='rdAOFDisable' type='oui/non' description="Désactiver la sauvegarde AOF sur les maitres et esclaves">
<value>non</value>
</variable>
</family>
<separators>
<separator name='redisInstanceName'>Instance Principale</separator>
<separator name='redisSlaveInstanceName'>Instance Secondaire</separator>
<separator name='rdClIP'>Autorisation d'accès au service Redis</separator>
<separator name='redisRole'>Grappe Redis</separator>
<separator name='rdClMemberIP'>Serveurs membres de la grappe Redis</separator>
</separators>
</variables>
<constraints>
@ -55,36 +122,144 @@
<param>non</param>
<target type='filelist'>redis</target>
<target type='family'>Redis</target>
<target type='service_accesslist'>saredis</target>
<target type='service_accesslist'>saRedis</target>
<target type='service_accesslist'>saRedisSlave</target>
<target type='servicelist'>svredis</target>
</condition>
<condition name='disabled_if_in' source='redisSlaveInstance'>
<param>non</param>
<target type='filelist'>redisSlave</target>
<target type='servicelist'>svredisSlave</target>
<target type='service_accesslist'>saRedisSlave</target>
<target type='variable'>redisSlaveInstanceName</target>
<target type='variable'>redisSlaveInstanceMaster</target>
<target type='variable'>redisPortSlave</target>
<target type='variable'>redisClPortSlave</target>
<target type='variable'>redisMemoryPolicySlave</target>
<target type='variable'>redisTCPKeepAliveSlave</target>
<target type='variable'>redisMaxMemorySlave</target>
</condition>
<condition name='disabled_if_in' source='rdClMemberAsSlave'>
<param>non</param>
<target type='variable'>rdClMemberSlaveName</target>
<target type='variable'>rdClMemberSlaveIP</target>
<target type='variable'>rdClMemberSlavePort</target>
<target type='variable'>rdClMemberSlaveRole</target>
<target type='variable'>rdClMemberSlaveMaster</target>
</condition>
<condition name='disabled_if_in' source='redisMode'>
<param>Local</param>
<target type='variable'>redisRole</target>
<target type='variable'>redisMasterIP</target>
<target type='variable'>redisMasterPort</target>
<target type='variable'>redisMasterPassword</target>
<target type='variable'>redisInstanceName</target>
<target type='variable'>redisSlaveInstance</target>
<target type='filelist'>redisCl</target>
<target type='variable'>redisClPort</target>
</condition>
<condition name='disabled_if_in' source='redisMode'>
<param>Local avec slave distant</param>
<target type='variable'>redisRole</target>
<target type='variable'>redisInstanceName</target>
<target type='variable'>redisSlaveInstanceName</target>
<target type='variable'>redisSlaveInstanceMaster</target>
<target type='variable'>redisClPortSlave</target>
<target type='variable'>redisClPort</target>
</condition>
<condition name='disabled_if_not_in' source='redisMode'>
<param>Local avec slave distant</param>
<target type='variable'>redisMasterIPSlave</target>
<target type='variable'>redisMasterPortSlave</target>
</condition>
<condition name='disabled_if_in' source='redisRole'>
<param>Leader</param>
<target type='variable'>redisMasterIP</target>
<target type='variable'>redisMasterPort</target>
<param>Node</param>
<target type='filelist'>redisCl</target>
<target type='variable'>redisInstanceName</target>
<target type='variable'>rdClMember</target>
<target type='variable'>rdClMemberIP</target>
<target type='variable'>rdClMemberPort</target>
<target type='variable'>rdClMemberRole</target>
<target type='variable'>rdClMemberMaster</target>
<target type='variable'>rdClMemberAsSlave</target>
<target type='variable'>rdClMemberSlaveName</target>
<target type='variable'>rdClMemberSlaveIP</target>
<target type='variable'>rdClMemberSlavePort</target>
<target type='variable'>rdClMemberSlaveRole</target>
<target type='variable'>rdClMemberSlaveMaster</target>
<target type='variable'>redisSlaveInstanceMaster</target>
</condition>
<condition name='disabled_if_in' source='rdClMemberRole'>
<param>master</param>
<target type='variable'>rdClMemberMaster</target>
</condition>
<group master='rdClIP'>
<slave>rdClmask</slave>
</group>
<group master='rdClMember'>
<slave>rdClMemberIP</slave>
<slave>rdClMemberPort</slave>
<slave>rdClMemberRole</slave>
<slave>rdClMemberMaster</slave>
<slave>rdClMemberAsSlave</slave>
<slave>rdClMemberSlaveName</slave>
<slave>rdClMemberSlaveIP</slave>
<slave>rdClMemberSlavePort</slave>
<slave>rdClMemberSlaveRole</slave>
<slave>rdClMemberSlaveMaster</slave>
</group>
<check name="valid_enum" target="redisRole">
<param>['Leader','Node']</param>
</check>
<check name="valid_enum" target="redisMode">
<param>['Local','Cluster']</param>
<param>['Local', 'Local avec slave distant', 'Cluster']</param>
</check>
<check name="valid_enum" target="rdClMemberRole">
<param>['master','slave']</param>
</check>
<check name="valid_enum" target="redisMemoryPolicy">
<param>['noeviction', 'allkeys-lru','volatile-lru','volatile-random', 'allkeys-random','volatile-ttl']</param>
</check>
<fill name='concat' target="redisSlaveInstanceName">
<param type='eole' name='valeur1'>redisInstanceName</param>
<param name='valeur2'>Second</param>
</fill>
<fill name='concat' target="rdClMemberSlaveName">
<param type='eole' name='valeur1'>rdClMember</param>
<param name='valeur2'>Second</param>
</fill>
<fill name='calc_val' target="rdClMemberSlaveIP">
<param type='eole' name='valeur'>rdClMemberIP</param>
</fill>
<auto name='calc_val' target='rdClMemberSlaveRole'>
<param>slave</param>
</auto>
<fill name='calc_val' target='redisInstanceName'>
<param type='eole' name='valeur'>nom_machine</param>
</fill>
<fill name='calc_val' target='redisMaxMemorySlave'>
<param type='eole' name='valeur'>redisMaxMemory</param>
</fill>
<fill name='calc_val' target='redisMemoryPolicySlave'>
<param type='eole' name='valeur'>redisMemoryPolicy</param>
</fill>
<fill name='calc_val' target='redisTCPKeepAliveSlave'>
<param type='eole' name='valeur'>redisTCPKeepAlive</param>
</fill>
</constraints>
<help>
<variable name='activer_redis'>Activer le service de cache Redis</variable>

View File

@ -0,0 +1,45 @@
[Unit]
Description=Advanced key-value store instance 2
After=network.target
Documentation=http://redis.io/documentation, man:redis-server(1)
[Service]
Type=forking
ExecStart=/usr/bin/redis-server /etc/redis/redis-slave.conf
PIDFile=/var/run/redis/redis-slave-server.pid
TimeoutStopSec=0
Restart=always
User=redis
Group=redis
RuntimeDirectory=redis
RuntimeDirectoryMode=2755
UMask=007
PrivateTmp=yes
LimitNOFILE=65535
PrivateDevices=yes
ProtectHome=yes
ReadOnlyDirectories=/
ReadWriteDirectories=-/var/lib/redis
ReadWriteDirectories=-/var/log/redis
ReadWriteDirectories=-/var/run/redis
NoNewPrivileges=true
CapabilityBoundingSet=CAP_SETGID CAP_SETUID CAP_SYS_RESOURCE
MemoryDenyWriteExecute=true
ProtectKernelModules=true
ProtectKernelTunables=true
ProtectControlGroups=true
RestrictRealtime=true
RestrictNamespaces=true
RestrictAddressFamilies=AF_INET AF_INET6 AF_UNIX
# redis-server can write to its own config file when in cluster mode so we
# permit writing there by default. If you are not using this feature, it is
# recommended that you replace the following lines with "ProtectSystem=full".
ProtectSystem=true
ReadWriteDirectories=-/etc/redis
[Install]
WantedBy=multi-user.target
Alias=redis2.service

255
postservice/90-redis-init Executable file
View File

@ -0,0 +1,255 @@
#!/bin/bash
#
# Cluster init !
#
#function ProgressBar {
# # Process data
# let _progress=(${1}*100/${2}*100)/100
# let _done=(${_progress}*4)/10
# let _left=40-$_done
# # Build progressbar string lengths
# _fill=$(printf "%${_done}s")
# _empty=$(printf "%${_left}s")
#
# # 1.2 Build progressbar strings and print the ProgressBar line
# # 1.2.1 Output example:
# # 1.2.1.1 Progress : [########################################] 100%
# printf "\rProgress : [${_fill// /#}${_empty// /-}] ${_progress}%%"
#}
function redisRun()
{
cmd="redis-cli"
host=$1
shift
port=$1
shift
#pass=$1
#shift
#opt="-h ${host} -p ${port} -a ${pass}"
opt="-h ${host} -p ${port}"
act=${@}
${cmd} ${opt} ${act}
return ${?}
}
#
# Get Node ID with IP Adress and Port Number
# Params :
# - $1 => Leader IP
# - $2 => Leader Port
# - $3 => Cluster Password
# - $4 => Node IP Adress
# - $5 => Node Port
#
function getNodeID()
{
if [[ ${1} == ${3} ]]
then
searchCmd="awk '/myself,master/ { print \$1 }'"
else
searchCmd="awk '/${3}:${4}@/ { print \$1 }'"
fi
result=$(redisRun $1 $2 cluster nodes | eval ${searchCmd})
rcode=${?}
if [[ -z ${result} ]]
then
searchCmd="awk '/${3}:${4}@/ { print \$1 }'"
result=$(redisRun $1 $2 cluster nodes | eval ${searchCmd})
rcode=${?}
fi
echo ${result}
return ${rcode}
}
function redisClusterForgetAll()
{
local res=0
for node in $(redisRun ${1} ${2} ${3} cluster nodes | awk '!/myself,master/ {print $1}')
do
redisRun ${1} ${2} ${3} "cluster forget ${node}"
res=$((res+${?}))
done
return ${res}
}
#
# Assing redis slots to master Node
# Params :
# - $1 => Node IP
# - $2 => Node Port
# - $3 => Cluster Password
# - $4 => First slot
# - $5 => Last slot
#
function redisSlotAssign()
{
res=0
for slot in $(seq ${3} ${4})
do
OUT=$(redisRun ${1} ${2} "cluster ADDSLOTS $slot")
res=$((res+${?}))
if [[ ${OUT} =~ ERR ]]
then
OUT=$(redisRun ${1} ${2} "cluster ADDSLOTS $slot")
fi
done
return ${res}
}
function redisAddReplica()
{
redisRun ${1} ${2} "cluster replicate ${3}"
return ${?}
}
function redisClusterIsOK()
{
out=$(redis-cli -h ${1} -p ${2} cluster info | grep "cluster_state:ok")
return $?
}
CONF="/etc/redis/cluster.conf"
INITFLAG="/usr/share/eole/redisinit.flg"
sysConf=$(grep "vm.overcommit_memory" /etc/sysctl.conf 2>&1 > /dev/null)
if [[ ${?} -ne 0 ]]
then
echo "vm.overcommit_memory=1" >> /etc/sysctl.conf
sysctl -p /etc/sysctl.conf
fi
[[ ! -e ${CONF} ]] && exit 0
declare -A IPADDRS
declare -A PORTS
declare -A ROLES
declare -A MASTERS
declare -A NIDS
declare LeaderIP
declare LeaderPort
index=0
while read line
do
[[ ${line} =~ ^# ]] && continue
line=${line//::/:none:}
li=(${line//:/ })
name=${li[0]}
ip=${li[1]}
port=${li[2]}
role=${li[3]}
master=${li[4]}
ntype=${li[5]}
if [[ ${ntype} == "Leader" ]]
then
LeaderIP=${ip}
LeaderPort=${port}
fi
NAMES+=(${name})
IPADDRS+=([${name}]=${ip})
PORTS+=([${name}]=${port})
ROLES+=([${name}]=${role})
MASTERS+=([${name}]=${master})
done < ${CONF}
# Disable Transparent Huge Page support on kernel
echo never > /sys/kernel/mm/transparent_hugepage/enabled
if [[ ${1} == "forget" ]]
then
redisClusterForgetAll ${LeaderIP} ${LeaderPort}
exit ${?}
fi
# If the cluster is "ok" don't do anything
st=$(redisClusterIsOK ${LeaderIP} ${LeaderPort})
[[ ${?} -eq 0 ]] && exit 0
if [[ -e ${INITFLAG} ]]
then
echo "Init allready done ... nothing to do"
exit 0
fi
echo " * Organise Cluster Meeting."
for node in ${NAMES[@]}
do
act="cluster meet ${IPADDRS[${node}]} ${PORTS[${node}]}"
echo " - ${node} - ${IPADDRS[${node}]}:${PORTS[${node}]} meeting with :"
for oth in ${NAMES[@]}
do
[[ ${oth} == ${node} ]] && continue
echo -en " -> ${oth} - ${IPADDRS[${oth}]} ${PORTS[${oth}]} "
redisRun ${IPADDRS[${oth}]} ${PORTS[${oth}]} "${act}"
done
done
echo " * Waiting for all members ."
for node in ${NAMES[@]}
do
try=3
scmd="awk '/${IPADDRS[$node]}:${PORTS[${node}]}/ {print \$8}'"
while [[ $(redisRun ${LeaderIP} ${LeaderPort} "cluster nodes" | eval ${scmd}) != "connected" ]]
do
sleep 1
try=$((try-1))
[[ ${try} -eq 0 ]]
break
done
done
nbMaster=$(grep -c ":master" ${CONF})
totalslots=16384
perNodeSlots=$((totalslots/nbMaster))
startSlot=0
echo " * Assign Slots to the nodes."
for node in ${NAMES[@]}
do
if [[ ${ROLES[$node]} == "master" ]]
then
if [[ ${startSlot} -eq 0 ]]
then
lastSlot=$(((perNodeSlots+startSlot)-1))
else
lastSlot=$((perNodeSlots+startSlot))
fi
[[ ${lastSlot} -ge ${totalslots} ]] && lastSlot=$((totalslots-1))
echo " - Slots ${startSlot} to ${lastSlot} => ${node} - ${IPADDRS[${node}]} ${PORTS[${node}]}"
redisSlotAssign ${IPADDRS[${node}]} ${PORTS[${node}]} ${startSlot} ${lastSlot}
startSlot=$((lastSlot+1))
fi
done
echo " * Configuring replication."
NIDS+=()
for node in ${NAMES[@]}
do
NIDS+=([${node}]=$(getNodeID ${LeaderIP} ${LeaderPort} ${IPADDRS[${node}]} ${PORTS[${node}]}))
done
for node in ${NAMES[@]}
do
[[ ${ROLES[$node]} == "master" ]] && continue
echo -ne " - Replicate ${MASTERS[${node}]} to ${node}\t\t"
redisAddReplica ${IPADDRS[${node}]} ${PORTS[${node}]} ${NIDS[${MASTERS[${node}]}]}
done
sleep 5
echo
echo "Cluster status :"
echo
redisRun ${LeaderIP} ${LeaderPort} cluster info
echo
touch ${INITFLAG}
exit 0

16
tmpl/redis-cluster.conf Normal file
View File

@ -0,0 +1,16 @@
%if %%getVar('activer_redis','non') == 'oui' and %%getVar('redisRole','Node') == 'Leader'
%%redisInstanceName:%%adresse_ip_eth0:%%{redisPort}:master::Leader:
%if %%getVar('redisSlaveInstance','non') == 'oui'
%%redisSlaveInstanceName:%%adresse_ip_eth0:%%{redisPortSlave}:slave:%%{redisSlaveInstanceMaster}:Node:
%end if
%for %%node in %%getVar('rdClMember',[])
%if %%node.rdClMemberRole == 'master'
%%{node}:%%{node.rdClMemberIP}:%%{node.rdClMemberPort}:%%{node.rdClMemberRole}::Node:
%else
%%{node}:%%{node.rdClMemberIP}:%%{node.rdClMemberPort}:%%{node.rdClMemberRole}:%%{node.rdClMemberMaster}:Node:
%end if
%if %%node.rdClMemberAsSlave == 'oui'
%%{node.rdClMemberSlaveName}:%%{node.rdClMemberSlaveIP}:%%{node.rdClMemberSlavePort}:%%{node.rdClMemberSlaveRole}:%%{node.rdClMemberSlaveMaster}:Node:
%end if
%end for
%end if

850
tmpl/redis-slave.conf Normal file
View File

@ -0,0 +1,850 @@
# Redis configuration file example.
#
# Note that in order to read the configuration file, Redis must be
# started with the file path as first argument:
#
# ./redis-server /path/to/redis.conf
# Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.
################################## INCLUDES ###################################
# Include one or more other config files here. This is useful if you
# have a standard template that goes to all Redis servers but also need
# to customize a few per-server settings. Include files can include
# other files, so use this wisely.
#
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
# from admin or Redis Sentinel. Since Redis always uses the last processed
# line as value of a configuration directive, you'd better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
#
# include /path/to/local.conf
# include /path/to/other.conf
################################## NETWORK #####################################
# By default, if no "bind" configuration directive is specified, Redis listens
# for connections from all the network interfaces available on the server.
# It is possible to listen to just one or multiple selected interfaces using
# the "bind" configuration directive, followed by one or more IP addresses.
#
# Examples:
#
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1 ::1
#
# ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the
# internet, binding to all the interfaces is dangerous and will expose the
# instance to everybody on the internet. So by default we uncomment the
# following bind directive, that will force Redis to listen only into
# the IPv4 lookback interface address (this means Redis will be able to
# accept connections only from clients running into the same computer it
# is running).
#
# IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES
# JUST COMMENT THE FOLLOWING LINE.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
bind 0.0.0.0
# Protected mode is a layer of security protection, in order to avoid that
# Redis instances left open on the internet are accessed and exploited.
#
# When protected mode is on and if:
#
# 1) The server is not binding explicitly to a set of addresses using the
# "bind" directive.
# 2) No password is configured.
#
# The server only accepts connections from clients connecting from the
# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain
# sockets.
#
# By default protected mode is enabled. You should disable it only if
# you are sure you want clients from other hosts to connect to Redis
# even if no authentication is configured, nor a specific set of interfaces
# are explicitly listed using the "bind" directive.
protected-mode no
# Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Redis will not listen on a TCP socket.
port %%redisPortSlave
%if %%redisMode == 'Local avec slave distant'
slaveof %%redisMasterIPSlave %%redisMasterPortSlave
%end if
# TCP listen() backlog.
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues. Note that the Linux kernel
# will silently truncate it to the value of /proc/sys/net/core/somaxconn so
# make sure to raise both the value of somaxconn and tcp_max_syn_backlog
# in order to get the desired effect.
tcp-backlog 511
# Unix socket.
#
# Specify the path for the Unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /var/run/redis/redis.sock
# unixsocketperm 700
# Close the connection after a client is idle for N seconds (0 to disable)
timeout 0
# TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
# equipment in the middle.
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
#
# A reasonable value for this option is 300 seconds, which is the new
# Redis default starting with Redis 3.2.1.
tcp-keepalive %%redisTCPKeepAliveSlave
################################# GENERAL #####################################
# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
daemonize yes
# If you run Redis from upstart or systemd, Redis can interact with your
# supervision tree. Options:
# supervised no - no supervision interaction
# supervised upstart - signal upstart by putting Redis into SIGSTOP mode
# supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET
# supervised auto - detect upstart or systemd method based on
# UPSTART_JOB or NOTIFY_SOCKET environment variables
# Note: these supervision methods only signal "process is ready."
# They do not enable continuous liveness pings back to your supervisor.
supervised systemd
# If a pid file is specified, Redis writes it where specified at startup
# and removes it at exit.
#
# When the server runs non daemonized, no pid file is created if none is
# specified in the configuration. When the server is daemonized, the pid file
# is used even if not specified, defaulting to "/var/run/redis.pid".
#
# Creating a pid file is best effort: if Redis is not able to create it
# nothing bad happens, the server will start and run normally.
pidfile /var/run/redis/redis-slave-server.pid
# Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
loglevel notice
# Specify the log file name. Also the empty string can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
logfile /var/log/redis/redis-server.log
# To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# syslog-enabled no
# Specify the syslog identity.
# syslog-ident redis
# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# syslog-facility local0
# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
databases 16
################################ SNAPSHOTTING ################################
#
# Save the DB on disk:
#
# save <seconds> <changes>
#
# Will save the DB if both the given number of seconds and the given
# number of write operations against the DB occurred.
#
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
#
# Note: you can disable saving completely by commenting out all "save" lines.
#
# It is also possible to remove all the previously configured save
# points by adding a save directive with a single empty string argument
# like in the following example:
#
# save ""
%if %%rdSaveDisable == 'oui'
save ""
%else
save 900 1
save 300 10
save 60 10000
%end if
# By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
stop-writes-on-bgsave-error yes
# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes
# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
rdbchecksum yes
# The filename where to dump the DB
dbfilename dump.rdb
# The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# The Append Only File will also be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
dir /var/lib/redis
################################## SECURITY ###################################
# Require clients to issue AUTH <PASSWORD> before processing any other
# commands. This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
#requirepass redisMasterPassword
# Command renaming.
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to slaves may cause problems.
################################### LIMITS ####################################
# Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
maxclients %%redisMaxClients
# Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU cache, or to set
# a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
maxmemory %%{redisMaxMemory}mb
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key according to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are no suitable keys for eviction.
#
# At the date of writing these commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
maxmemory-policy %%redisMemoryPolicySlave
# LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs a bit more CPU. 3 is very fast but not very accurate.
#
# maxmemory-samples 5
############################## APPEND ONLY MODE ###############################
# By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
#
# Please check http://redis.io/topics/persistence for more information.
%if %%rdAOFDisable == 'oui'
appendonly no
%else
appendonly yes
%end if
# The name of the append only file (default: "appendonly.aof")
appendfilename "appendonly.aof"
# The fsync() call tells the Operating System to actually write data on disk
# instead of waiting for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log. Slow, Safest.
# everysec: fsync only one time every second. Compromise.
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# More details please check the following article:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec".
# appendfsync always
appendfsync everysec
# appendfsync no
# When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
no-appendfsync-on-rewrite no
# Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature.
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
# An AOF file may be found to be truncated at the end during the Redis
# startup process, when the AOF data gets loaded back into memory.
# This may happen when the system where Redis is running
# crashes, especially when an ext4 filesystem is mounted without the
# data=ordered option (however this can't happen when Redis itself
# crashes or aborts but the operating system still works correctly).
#
# Redis can either exit with an error when this happens, or load as much
# data as possible (the default now) and start if the AOF file is found
# to be truncated at the end. The following option controls this behavior.
#
# If aof-load-truncated is set to yes, a truncated AOF file is loaded and
# the Redis server starts emitting a log to inform the user of the event.
# Otherwise if the option is set to no, the server aborts with an error
# and refuses to start. When the option is set to no, the user requires
# to fix the AOF file using the "redis-check-aof" utility before to restart
# the server.
#
# Note that if the AOF file will be found to be corrupted in the middle
# the server will still exit with an error. This option only applies when
# Redis will try to read more data from the AOF file but not enough bytes
# will be found.
aof-load-truncated yes
################################ LUA SCRIPTING ###############################
# Max execution time of a Lua script in milliseconds.
#
# If the maximum execution time is reached Redis will log that a script is
# still in execution after the maximum allowed time and will start to
# reply to queries with an error.
#
# When a long running script exceeds the maximum execution time only the
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
# used to stop a script that did not yet called write commands. The second
# is the only way to shut down the server in the case a write command was
# already issued by the script but the user doesn't want to wait for the natural
# termination of the script.
#
# Set it to 0 or a negative value for unlimited execution without warnings.
lua-time-limit 5000
%if %%getVar('redisMode','Local') == "Cluster"
################################ REDIS CLUSTER ###############################
#
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however
# in order to mark it as "mature" we need to wait for a non trivial percentage
# of users to deploy it in production.
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
# Normal Redis instances can't be part of a Redis Cluster; only nodes that are
# started as cluster nodes can. In order to start a Redis instance as a
# cluster node enable the cluster support uncommenting the following:
#
cluster-enabled yes
# Every cluster node has a cluster configuration file. This file is not
# intended to be edited by hand. It is created and updated by Redis nodes.
# Every Redis Cluster node requires a different cluster configuration file.
# Make sure that instances running in the same system do not have
# overlapping cluster configuration file names.
#
cluster-config-file nodes-slave.conf
# Cluster node timeout is the amount of milliseconds a node must be unreachable
# for it to be considered in failure state.
# Most other internal time limits are multiple of the node timeout.
#
cluster-node-timeout 15000
# A slave of a failing master will avoid to start a failover if its data
# looks too old.
#
# There is no simple way for a slave to actually have a exact measure of
# its "data age", so the following two checks are performed:
#
# 1) If there are multiple slaves able to failover, they exchange messages
# in order to try to give an advantage to the slave with the best
# replication offset (more data from the master processed).
# Slaves will try to get their rank by offset, and apply to the start
# of the failover a delay proportional to their rank.
#
# 2) Every single slave computes the time of the last interaction with
# its master. This can be the last ping or command received (if the master
# is still in the "connected" state), or the time that elapsed since the
# disconnection with the master (if the replication link is currently down).
# If the last interaction is too old, the slave will not try to failover
# at all.
#
# The point "2" can be tuned by user. Specifically a slave will not perform
# the failover if, since the last interaction with the master, the time
# elapsed is greater than:
#
# (node-timeout * slave-validity-factor) + repl-ping-slave-period
#
# So for example if node-timeout is 30 seconds, and the slave-validity-factor
# is 10, and assuming a default repl-ping-slave-period of 10 seconds, the
# slave will not try to failover if it was not able to talk with the master
# for longer than 310 seconds.
#
# A large slave-validity-factor may allow slaves with too old data to failover
# a master, while a too small value may prevent the cluster from being able to
# elect a slave at all.
#
# For maximum availability, it is possible to set the slave-validity-factor
# to a value of 0, which means, that slaves will always try to failover the
# master regardless of the last time they interacted with the master.
# (However they'll always try to apply a delay proportional to their
# offset rank).
#
# Zero is the only value able to guarantee that when all the partitions heal
# the cluster will always be able to continue.
#
cluster-slave-validity-factor 10
# Cluster slaves are able to migrate to orphaned masters, that are masters
# that are left without working slaves. This improves the cluster ability
# to resist to failures as otherwise an orphaned master can't be failed over
# in case of failure if it has no working slaves.
#
# Slaves migrate to orphaned masters only if there are still at least a
# given number of other working slaves for their old master. This number
# is the "migration barrier". A migration barrier of 1 means that a slave
# will migrate only if there is at least 1 other working slave for its master
# and so forth. It usually reflects the number of slaves you want for every
# master in your cluster.
#
# Default is 1 (slaves migrate only if their masters remain with at least
# one slave). To disable migration just set it to a very large value.
# A value of 0 can be set but is useful only for debugging and dangerous
# in production.
#
cluster-migration-barrier 1
# By default Redis Cluster nodes stop accepting queries if they detect there
# is at least an hash slot uncovered (no available node is serving it).
# This way if the cluster is partially down (for example a range of hash slots
# are no longer covered) all the cluster becomes, eventually, unavailable.
# It automatically returns available as soon as all the slots are covered again.
#
# However sometimes you want the subset of the cluster which is working,
# to continue to accept queries for the part of the key space that is still
# covered. In order to do so, just set the cluster-require-full-coverage
# option to no.
#
cluster-require-full-coverage yes
# In order to setup your cluster make sure to read the documentation
# available at http://redis.io web site.
%end if
################################## SLOW LOG ###################################
# The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
#
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands.
# The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
slowlog-log-slower-than 10000
# There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
slowlog-max-len 128
################################ LATENCY MONITOR ##############################
# The Redis latency monitoring subsystem samples different operations
# at runtime in order to collect data related to possible sources of
# latency of a Redis instance.
#
# Via the LATENCY command this information is available to the user that can
# print graphs and obtain reports.
#
# The system only logs operations that were performed in a time equal or
# greater than the amount of milliseconds specified via the
# latency-monitor-threshold configuration directive. When its value is set
# to zero, the latency monitor is turned off.
#
# By default latency monitoring is disabled since it is mostly not needed
# if you don't have latency issues, and collecting data has a performance
# impact, that while very small, can be measured under big load. Latency
# monitoring can easily be enabled at runtime using the command
# "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
latency-monitor-threshold 0
############################# EVENT NOTIFICATION ##############################
# Redis can notify Pub/Sub clients about events happening in the key space.
# This feature is documented at http://redis.io/topics/notifications
#
# For instance if keyspace events notification is enabled, and a client
# performs a DEL operation on key "foo" stored in the Database 0, two
# messages will be published via Pub/Sub:
#
# PUBLISH __keyspace@0__:foo del
# PUBLISH __keyevent@0__:del foo
#
# It is possible to select the events that Redis will notify among a set
# of classes. Every class is identified by a single character:
#
# K Keyspace events, published with __keyspace@<db>__ prefix.
# E Keyevent events, published with __keyevent@<db>__ prefix.
# g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
# $ String commands
# l List commands
# s Set commands
# h Hash commands
# z Sorted set commands
# x Expired events (events generated every time a key expires)
# e Evicted events (events generated when a key is evicted for maxmemory)
# A Alias for g$lshzxe, so that the "AKE" string means all the events.
#
# The "notify-keyspace-events" takes as argument a string that is composed
# of zero or multiple characters. The empty string means that notifications
# are disabled.
#
# Example: to enable list and generic events, from the point of view of the
# event name, use:
#
# notify-keyspace-events Elg
#
# Example 2: to get the stream of the expired keys subscribing to channel
# name __keyevent@0__:expired use:
#
# notify-keyspace-events Ex
#
# By default all notifications are disabled because most users don't need
# this feature and the feature has some overhead. Note that if you don't
# specify at least one of K or E, no events will be delivered.
notify-keyspace-events ""
############################### ADVANCED CONFIG ###############################
# Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
hash-max-ziplist-entries 512
hash-max-ziplist-value 64
# Lists are also encoded in a special way to save a lot of space.
# The number of entries allowed per internal list node can be specified
# as a fixed maximum size or a maximum number of elements.
# For a fixed maximum size, use -5 through -1, meaning:
# -5: max size: 64 Kb <-- not recommended for normal workloads
# -4: max size: 32 Kb <-- not recommended
# -3: max size: 16 Kb <-- probably not recommended
# -2: max size: 8 Kb <-- good
# -1: max size: 4 Kb <-- good
# Positive numbers mean store up to _exactly_ that number of elements
# per list node.
# The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size),
# but if your use case is unique, adjust the settings as necessary.
list-max-ziplist-size -2
# Lists may also be compressed.
# Compress depth is the number of quicklist ziplist nodes from *each* side of
# the list to *exclude* from compression. The head and tail of the list
# are always uncompressed for fast push/pop operations. Settings are:
# 0: disable all list compression
# 1: depth 1 means "don't start compressing until after 1 node into the list,
# going from either the head or tail"
# So: [head]->node->node->...->node->[tail]
# [head], [tail] will always be uncompressed; inner nodes will compress.
# 2: [head]->[next]->node->node->...->node->[prev]->[tail]
# 2 here means: don't compress head or head->next or tail->prev or tail,
# but compress all nodes between them.
# 3: [head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail]
# etc.
list-compress-depth 0
# Sets have a special encoding in just one case: when a set is composed
# of just strings that happen to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
set-max-intset-entries 512
# Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
# HyperLogLog sparse representation bytes limit. The limit includes the
# 16 bytes header. When an HyperLogLog using the sparse representation crosses
# this limit, it is converted into the dense representation.
#
# A value greater than 16000 is totally useless, since at that point the
# dense representation is more memory efficient.
#
# The suggested value is ~ 3000 in order to have the benefits of
# the space efficient encoding without slowing down too much PFADD,
# which is O(N) with the sparse encoding. The value can be raised to
# ~ 10000 when CPU is not a concern, but space is, and the data set is
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
hll-sparse-max-bytes 3000
# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation Redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into a hash table
# that is rehashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
#
# The default is to use this millisecond 10 times every second in order to
# actively rehash the main dictionaries, freeing memory when possible.
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply from time to time
# to queries with 2 milliseconds delay.
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
activerehashing yes
# The client output buffer limits can be used to force disconnection of clients
# that are not reading data from the server fast enough for some reason (a
# common reason is that a Pub/Sub client can't consume messages as fast as the
# publisher can produce them).
#
# The limit can be set differently for the three different classes of clients:
#
# normal -> normal clients including MONITOR clients
# slave -> slave clients
# pubsub -> clients subscribed to at least one pubsub channel or pattern
#
# The syntax of every client-output-buffer-limit directive is the following:
#
# client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
#
# A client is immediately disconnected once the hard limit is reached, or if
# the soft limit is reached and remains reached for the specified number of
# seconds (continuously).
# So for instance if the hard limit is 32 megabytes and the soft limit is
# 16 megabytes / 10 seconds, the client will get disconnected immediately
# if the size of the output buffers reach 32 megabytes, but will also get
# disconnected if the client reaches 16 megabytes and continuously overcomes
# the limit for 10 seconds.
#
# By default normal clients are not limited because they don't receive data
# without asking (in a push way), but just after a request, so only
# asynchronous clients may create a scenario where data is requested faster
# than it can read.
#
# Instead there is a default limit for pubsub and slave clients, since
# subscribers and slaves receive data in a push fashion.
#
# Both the hard or the soft limit can be disabled by setting them to zero.
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave %%{rdCliOutBuffHardLimit}mb %%{rdCliOutBuffSoftLimit}mb 60
client-output-buffer-limit pubsub 32mb 8mb 60
# Redis calls an internal function to perform many background tasks, like
# closing connections of clients in timeout, purging expired keys that are
# never requested, and so forth.
#
# Not all tasks are performed with the same frequency, but Redis checks for
# tasks to perform according to the specified "hz" value.
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Redis is idle, but at the same time will make Redis more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
hz 10
# When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
aof-rewrite-incremental-fsync yes

View File

@ -77,7 +77,7 @@ bind 0.0.0.0
# you are sure you want clients from other hosts to connect to Redis
# even if no authentication is configured, nor a specific set of interfaces
# are explicitly listed using the "bind" directive.
protected-mode yes
protected-mode no
# Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Redis will not listen on a TCP socket.
@ -199,9 +199,13 @@ databases 16
#
# save ""
%if %%rdSaveDisable == 'oui'
save ""
%else
save 900 1
save 300 10
save 60 10000
%end if
# By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
@ -246,225 +250,6 @@ dbfilename dump.rdb
# Note that you must specify a directory here, not a file name.
dir /var/lib/redis
%if %%getVar('redisRole','Leader') == "Node"
################################# REPLICATION #################################
# Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. A few things to understand ASAP about Redis replication.
#
# 1) Redis replication is asynchronous, but you can configure a master to
# stop accepting writes if it appears to be not connected with at least
# a given number of slaves.
# 2) Redis slaves are able to perform a partial resynchronization with the
# master if the replication link is lost for a relatively small amount of
# time. You may want to configure the replication backlog size (see the next
# sections of this file) with a sensible value depending on your needs.
# 3) Replication is automatic and does not need user intervention. After a
# network partition slaves automatically try to reconnect to masters
# and resynchronize with them.
#
slaveof %%redisMasterIP %%redisMasterPort
# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
masterauth %%redisMasterPassword
# When a slave loses its connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
# still reply to client requests, possibly with out of date data, or the
# data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale-data is set to 'no' the slave will reply with
# an error "SYNC with master in progress" to all the kind of commands
# but to INFO and SLAVEOF.
#
slave-serve-stale-data yes
# You can configure a slave instance to accept writes or not. Writing against
# a slave instance may be useful to store some ephemeral data (because data
# written on a slave will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
#
# Since Redis 2.6 by default slaves are read-only.
#
# Note: read only slaves are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only slave exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only slaves using 'rename-command' to shadow all the
# administrative / dangerous commands.
slave-read-only yes
# Replication SYNC strategy: disk or socket.
#
# -------------------------------------------------------
# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
# -------------------------------------------------------
#
# New slaves and reconnecting slaves that are not able to continue the replication
# process just receiving differences, need to do what is called a "full
# synchronization". An RDB file is transmitted from the master to the slaves.
# The transmission can happen in two different ways:
#
# 1) Disk-backed: The Redis master creates a new process that writes the RDB
# file on disk. Later the file is transferred by the parent
# process to the slaves incrementally.
# 2) Diskless: The Redis master creates a new process that directly writes the
# RDB file to slave sockets, without touching the disk at all.
#
# With disk-backed replication, while the RDB file is generated, more slaves
# can be queued and served with the RDB file as soon as the current child producing
# the RDB file finishes its work. With diskless replication instead once
# the transfer starts, new slaves arriving will be queued and a new transfer
# will start when the current one terminates.
#
# When diskless replication is used, the master waits a configurable amount of
# time (in seconds) before starting the transfer in the hope that multiple slaves
# will arrive and the transfer can be parallelized.
#
# With slow disks and fast (large bandwidth) networks, diskless replication
# works better.
repl-diskless-sync no
# When diskless replication is enabled, it is possible to configure the delay
# the server waits in order to spawn the child that transfers the RDB via socket
# to the slaves.
#
# This is important since once the transfer starts, it is not possible to serve
# new slaves arriving, that will be queued for the next RDB transfer, so the server
# waits a delay in order to let more slaves arrive.
#
# The delay is specified in seconds, and by default is 5 seconds. To disable
# it entirely just set it to 0 seconds and the transfer will start ASAP.
repl-diskless-sync-delay 5
# Slaves send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# repl-ping-slave-period 10
# The following option sets the replication timeout for:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of slave.
# 2) Master timeout from the point of view of slaves (data, pings).
# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# repl-timeout 60
# Disable TCP_NODELAY on the slave socket after SYNC?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to slaves. But this can add a delay for
# the data to appear on the slave side, up to 40 milliseconds with
# Linux kernels using a default configuration.
#
# If you select "no" the delay for data to appear on the slave side will
# be reduced but more bandwidth will be used for replication.
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and slaves are many hops away, turning this to "yes" may
# be a good idea.
repl-disable-tcp-nodelay no
# Set the replication backlog size. The backlog is a buffer that accumulates
# slave data when slaves are disconnected for some time, so that when a slave
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the slave missed while
# disconnected.
#
# The bigger the replication backlog, the longer the time the slave can be
# disconnected and later be able to perform a partial resynchronization.
#
# The backlog is only allocated once there is at least a slave connected.
#
# repl-backlog-size 1mb
# After a master has no longer connected slaves for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last slave disconnected, for
# the backlog buffer to be freed.
#
# A value of 0 means to never release the backlog.
#
# repl-backlog-ttl 3600
# The slave priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a slave to promote into a
# master if the master is no longer working correctly.
#
# A slave with a low priority number is considered better for promotion, so
# for instance if there are three slaves with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
#
# However a special priority of 0 marks the slave as not able to perform the
# role of master, so a slave with priority of 0 will never be selected by
# Redis Sentinel for promotion.
#
# By default the priority is 100.
slave-priority 100
# It is possible for a master to stop accepting writes if there are less than
# N slaves connected, having a lag less or equal than M seconds.
#
# The N slaves need to be in "online" state.
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the slave, that is usually sent every second.
#
# This option does not GUARANTEE that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough slaves
# are available, to the specified number of seconds.
#
# For example to require at least 3 slaves with a lag <= 10 seconds use:
#
# min-slaves-to-write 3
# min-slaves-max-lag 10
#
# Setting one or the other to 0 disables the feature.
#
# By default min-slaves-to-write is set to 0 (feature disabled) and
# min-slaves-max-lag is set to 10.
# A Redis master is able to list the address and port of the attached
# slaves in different ways. For example the "INFO replication" section
# offers this information, which is used, among other tools, by
# Redis Sentinel in order to discover slave instances.
# Another place where this info is available is in the output of the
# "ROLE" command of a masteer.
#
# The listed IP and address normally reported by a slave is obtained
# in the following way:
#
# IP: The address is auto detected by checking the peer address
# of the socket used by the slave to connect with the master.
#
# Port: The port is communicated by the slave during the replication
# handshake, and is normally the port that the slave is using to
# list for connections.
#
# However when port forwarding or Network Address Translation (NAT) is
# used, the slave may be actually reachable via different IP and port
# pairs. The following two options can be used by a slave in order to
# report to its master a specific set of IP and port, so that both INFO
# and ROLE will report those values.
#
# There is no need to use both the options if you need to override just
# the port or the IP address.
#
# slave-announce-ip 5.5.5.5
# slave-announce-port 1234
%end if
################################## SECURITY ###################################
# Require clients to issue AUTH <PASSWORD> before processing any other
@ -478,7 +263,7 @@ slave-priority 100
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
requirepass %%redisMasterPassword
#requirepass redisMasterPassword
# Command renaming.
#
@ -510,7 +295,7 @@ requirepass %%redisMasterPassword
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
# maxclients 10000
maxclients %%redisMaxClients
# Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
@ -535,7 +320,7 @@ requirepass %%redisMasterPassword
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
maxmemory %{redisMaxMemory}mb
maxmemory %%{redisMaxMemory}mb
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
@ -591,7 +376,12 @@ maxmemory-policy %%redisMemoryPolicy
#
# Please check http://redis.io/topics/persistence for more information.
%if %%rdAOFDisable == 'oui'
appendonly no
%else
appendonly yes
%end if
# The name of the append only file (default: "appendonly.aof")
@ -1028,7 +818,7 @@ activerehashing yes
#
# Both the hard or the soft limit can be disabled by setting them to zero.
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave 256mb 64mb 60
client-output-buffer-limit slave %%{rdCliOutBuffHardLimit}mb %%{rdCliOutBuffSoftLimit}mb 60
client-output-buffer-limit pubsub 32mb 8mb 60
# Redis calls an internal function to perform many background tasks, like

2
tmpl/redis_sysctl.conf Normal file
View File

@ -0,0 +1,2 @@
net.core.somaxconn = 512