* Fix issue (present since bootkube->bootstrap switch) where
controller asset copy could fail if /etc/kubernetes/manifests
wasn't created in time on platforms using path activation for
the Kubelet (observed on DigitalOcean, also possible on
bare-metal)
* Drop `node-role.kubernetes.io/master` and
`node-role.kubernetes.io/node` node labels
* Kubelet (v1.16) now rejects the node labels used
in the kubectl get nodes ROLES output
* https://github.com/kubernetes/kubernetes/issues/75457
* Rename render module from bootkube to bootstrap. Avoid
confusion with the kubernetes-incubator/bootkube tool since
it is no longer used
* Use the poseidon/terraform-render-bootstrap Terraform module
(formerly poseidon/terraform-render-bootkube)
* https://github.com/poseidon/terraform-render-bootkube/pull/149
* Run a kube-apiserver, kube-scheduler, and kube-controller-manager
static pod on each controller node. Previously, kube-apiserver was
self-hosted as a DaemonSet across controllers and kube-scheduler
and kube-controller-manager were a Deployment (with 2 or
controller_count many replicas).
* Remove bootkube bootstrap and pivot to self-hosted
* Remove pod-checkpointer manifests (no longer needed)
* Run a kube-apiserver, kube-scheduler, and kube-controller-manager
static pod on each controller node. Previously, kube-apiserver was
self-hosted as a DaemonSet across controllers and kube-scheduler
and kube-controller-manager were a Deployment (with 2 or
controller_count many replicas).
* Remove bootkube bootstrap and pivot to self-hosted
* Remove pod-checkpointer manifests (no longer needed)
* Allow updating terraform-provider-ct to any release
beyond v0.3.2, but below v1.0. This relaxes the prior
constraint that allowed only v0.3.y provider versions
* Run kube-apiserver as a non-root user (nobody). User
no longer needs to bind low number ports.
* On most platforms, the kube-apiserver load balancer listens
on 6443 and fronts controllers with kube-apiserver pods using
port 6443. Google Cloud TCP proxy load balancers cannot listen
on 6443. However, GCP's load balancer can be made to listen on
443, while kube-apiserver uses 6443 across all platforms.
* For Container Linux or Flatcar Linux alpha/beta/stable,
continue using the `cgroupfs` driver
* For Fedora Atomic, continue using the `systemd` driver
* For Flatcar Linux Edge, use the `systemd` driver
* Replace v0.11 bracket type hints with Terraform v0.12 list expressions
* Use expression syntax instead of interpolated strings, where suggested
* Update bare-metal tutorial
* Define `clc_snippets` type constraint map(list(string))
* Define Terraform and plugin version requirements in versions.tf
* Require matchbox ~> 0.3.0 to support Terraform v0.12
* Require ct ~> 0.3.2 to support Terraform v0.12
* Fix to remove a trailing slash that was erroneously introduced
in the scripting that updated from v1.14.1 to v1.14.2
* Workaround before this fix was to re-run `terraform init`
* Change flannel port from the kernel default 8472 to the
IANA assigned VXLAN port 4789
* Update firewall rules or security groups for VXLAN
* Why now? Calico now offers its own VXLAN backend so
standardizing on the IANA port will simplify config
* https://github.com/coreos/flannel/blob/master/Documentation/backends.md#vxlan
* Add an `enable_aggregation` variable to enable the kube-apiserver
aggregation layer for adding extension apiservers to clusters
* Aggregation is **disabled** by default. Typhoon recommends you not
enable aggregation. Consider whether less invasive ways to achieve your
goals are possible and whether those goals are well-founded
* Enabling aggregation and extension apiservers increases the attack
surface of a cluster and makes extensions a part of the control plane.
Admins must scrutinize and trust any extension apiserver used.
* Passing a v1.14 CNCF conformance test requires aggregation be enabled.
Having an option for aggregation keeps compliance, but retains the
stricter security posture on default clusters
* Add calico-ipam CRDs and RBAC permissions
* Switch IPAM from host-local to calico-ipam
* `calico-ipam` subnets `ippools` (defaults to pod CIDR) into
`ipamblocks` (defaults to /26, but set to /24 in Typhoon)
* `host-local` subnets the pod CIDR based on the node PodCIDR
field (set via kube-controller-manager as /24's)
* Create a custom default IPv4 IPPool to ensure the block size
is kept at /24 to allow 110 pods per node (Kubernetes default)
* Retaining host-local was slightly preferred, but Calico v3.6
is migrating all usage to calico-ipam. The codepath that skipped
calico-ipam for KDD was removed
* https://docs.projectcalico.org/v3.6/release-notes/
* Require an iPXE-enabled network boot environment with support for
TLS downloads. PXE clients must chainload to iPXE firmware compiled
with `DOWNLOAD_PROTO_HTTPS` enabled ([crypto](https://ipxe.org/crypto))
* iPXE's pre-compiled firmware binaries do _not_ enable HTTPS. Admins
should build iPXE from source with support enabled
* Affects the Container Linux and Flatcar Linux install profiles that
pull from public downloads. No effect when cached_install=true
or using Fedora Atomic, as those download from Matchbox
* Add `download_protocol` variable. Recognizing boot firmware TLS
support is difficult in some environments, set the protocol to "http"
for the old behavior (discouraged)
* Resolve in-addr.arpa and ip6.arpa DNS PTR requests for Kubernetes
service IPs and pod IPs
* Previously, CoreDNS was configured to resolve in-addr.arpa PTR
records for service IPs (but not pod IPs)