* Replace v0.11 bracket type hints with Terraform v0.12 list expressions
* Use expression syntax instead of interpolated strings, where suggested
* Update AWS tutorial and worker pools documentation
* Define Terraform and plugin version requirements in versions.tf
* Require aws ~> 2.7 to support Terraform v0.12
* Require ct ~> 0.3.2 to support Terraform v0.12
* This change affects users who use worker pools on AWS, GCP, or
Azure with a Container Linux derivative
* Rename worker pool modules' `count` variable to `worker_count`,
because `count` will be a reserved variable name in Terraform v0.12
* Fix to remove a trailing slash that was erroneously introduced
in the scripting that updated from v1.14.1 to v1.14.2
* Workaround before this fix was to re-run `terraform init`
* Change flannel port from the kernel default 8472 to the
IANA assigned VXLAN port 4789
* Update firewall rules or security groups for VXLAN
* Why now? Calico now offers its own VXLAN backend so
standardizing on the IANA port will simplify config
* https://github.com/coreos/flannel/blob/master/Documentation/backends.md#vxlan
* Add an `enable_aggregation` variable to enable the kube-apiserver
aggregation layer for adding extension apiservers to clusters
* Aggregation is **disabled** by default. Typhoon recommends you not
enable aggregation. Consider whether less invasive ways to achieve your
goals are possible and whether those goals are well-founded
* Enabling aggregation and extension apiservers increases the attack
surface of a cluster and makes extensions a part of the control plane.
Admins must scrutinize and trust any extension apiserver used.
* Passing a v1.14 CNCF conformance test requires aggregation be enabled.
Having an option for aggregation keeps compliance, but retains the
stricter security posture on default clusters
* Add ability to load balance TCP applications (e.g. NodePort)
* Output the network load balancer ARN as `nlb_id`
* Accept a `worker_target_groups` (ARN) list to which worker
instances should be added
* AWS NLBs and target groups don't support UDP
* Add calico-ipam CRDs and RBAC permissions
* Switch IPAM from host-local to calico-ipam
* `calico-ipam` subnets `ippools` (defaults to pod CIDR) into
`ipamblocks` (defaults to /26, but set to /24 in Typhoon)
* `host-local` subnets the pod CIDR based on the node PodCIDR
field (set via kube-controller-manager as /24's)
* Create a custom default IPv4 IPPool to ensure the block size
is kept at /24 to allow 110 pods per node (Kubernetes default)
* Retaining host-local was slightly preferred, but Calico v3.6
is migrating all usage to calico-ipam. The codepath that skipped
calico-ipam for KDD was removed
* https://docs.projectcalico.org/v3.6/release-notes/
* Allow terraform-provider-aws >= v1.13, but < 3.0. No change
to the minimum version, but allow using v2.x.y releases
* Verify compatability with terraform-provider-aws v2.1.0
* Resolve in-addr.arpa and ip6.arpa DNS PTR requests for Kubernetes
service IPs and pod IPs
* Previously, CoreDNS was configured to resolve in-addr.arpa PTR
records for service IPs (but not pod IPs)
* Assign pod priorityClassNames to critical cluster and node
components (higher is higher priority) to inform node out-of-resource
eviction order and scheduler preemption and scheduling order
* Priority Admission Controller has been enabled since Typhoon
v1.11.1
* Fix a regression caused by lowering the Kubelet TLS client
certificate to system:nodes group (#100) since dropping
cluster-admin dropped the Kubelet's ability to delete nodes.
* On clouds where workers can scale down (manual terraform apply,
AWS spot termination, Azure low priority deletion), worker shutdown
runs the delete-node.service to remove a node to prevent NotReady
nodes from accumulating
* Allow Kubelets to delete cluster nodes via system:nodes group. Kubelets
acting with system:node and kubelet-delete ClusterRoles is still an
improvement over acting as cluster-admin
* DNS zones served by AWS Route53 may use AWS's special alias records
(other DNS providers would use a CNAME) to resolve the ingress NLB.
Alias records require the NLB DNS name's DNS zone id (not the cluster
`dns_zone_id`)
* System components that require certificates signed by the cluster
CA can submit a CSR to the apiserver, have an administrator inspect
and approve it, and be issued a certificate
* Configure kube-controller-manager to sign Approved CSR's using the
cluster CA private key
* Admins are responsible for approving or denying CSRs, otherwise,
no certificate is issued. Read the Kubernetes docs carefully and
verify the entity making the request and the authorization level
* https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster
* Use a single admin kubeconfig for initial bootkube bootstrap
and for use by a human admin. Previously, an admin kubeconfig
without a named context was used for bootstrap and direct usage
with KUBECONFIG=path, while one with a named context was used
for `kubectl config use-context` style usage. Confusing.
* Provide the admin kubeconfig via `assets/auth/kubeconfig`,
`assets/auth/CLUSTER-config`, or output `kubeconfig-admin`
* terraform-render-bootkube module deprecated kube_dns_service_ip
output in favor of cluster_dns_service_ip
* Rename k8s_dns_service_ip to cluster_dns_service_ip for
consistency too
* Kubelets can use a lower-privilege TLS client certificate with
Org system:nodes and a binding to the system:node ClusterRole
* Admin kubeconfig's continue to belong to Org system:masters to
provide cluster-admin (available in assets/auth/kubeconfig or as
a Terraform output kubeconfig-admin)
* Remove bare-metal output variable kubeconfig
* Add ServiceAccounts and ClusterRoleBindings for kube-apiserver
and kube-scheduler
* Remove the ClusterRoleBinding for the kube-system default ServiceAccount
* Rename the CA certificate CommonName for consistency with upstream
* T3 is the next generation general purpose burstable
instance type. Compared with t2.small, the t3.small is
cheaper, has 2 vCPU (instead of 1) and provides 5 Gbps
of pod-to-pod bandwidth (instead of 1 Gbps)
* Add kube-router for pod networking and NetworkPolicy
as an experiment
* Experiments are not documented or supported in any way,
and may be removed without notice. They have known issues
and aren't enabled without special options.
* Remove bullet about isolating workloads on workers, its
now common practice and new users will assume it
* List advanced features available in each module
* Fix erroneous Kubernetes version listing for Google Cloud
Fedora Atomic
* Calico Felix has been reporting anonymous usage data about the
version and cluster size, which violates Typhoon's privacy policy
where analytics should be opt-in only
* Add a variable enable_reporting (default: false) to allow opting
in to reporting usage data to Calico (or future components)
* loop sends an initial query to detect infinite forwarding
loops in configured upstream DNS servers and fast exit with
an error (its a fatal misconfiguration on the network that
will otherwise cause resolvers to consume memory/CPU until
crashing, masking the problem)
* https://github.com/coredns/coredns/tree/master/plugin/loop
* loadbalance randomizes the ordering of A, AAAA, and MX records
in responses to provide round-robin load balancing (as usual,
clients may still cache responses though)
* https://github.com/coredns/coredns/tree/master/plugin/loadbalance
* Prefer InternalIP and ExternalIP over the node's hostname,
to match upstream behavior and kubeadm
* Previously, hostname-override was used to set node names
to internal IP's to work around some cloud providers not
resolving hostnames for instances (e.g. DO droplets)
* Updating the `terraform-provider-ct` plugin is known to produce
a `user_data` diff in all pre-existing clusters. Applying the
diff to pre-existing cluster destroys controller nodes
* Ignore changes to controller `user_data`. Once all managed
clusters use a release containing this change, it is possible
to update the `terraform-provider-ct` plugin (worker `user_data`
will still be modified)
* Changing the module `ref` for an existing cluster and
re-applying is still NOT supported (although this PR
would protect controllers from being destroyed)
* Run at least two replicas of CoreDNS to better support
rolling updates (previously, kube-dns had a pod nanny)
* On multi-master clusters, set the CoreDNS replica count
to match the number of masters (e.g. a 3-master cluster
previously used replicas:1, now replicas:3)
* Add AntiAffinity preferred rule to favor distributing
CoreDNS pods across controller nodes nodes
* Continue to ensure scheduler and controller-manager run
at least two replicas to support performing kubectl edits
on single-master clusters (no change)
* For multi-master clusters, set scheduler / controller-manager
replica count to the number of masters (e.g. a 3-master cluster
previously used replicas:2, now replicas:3)
* Add new bird and felix readiness checks
* Read MTU from ConfigMap veth_mtu
* Add RBAC read for serviceaccounts
* Remove invalid description from CRDs
* Basic monitoring (free) is sufficient for casual console browsing
* Detailed monitoring (paid) is not leveraged for CloudWatch anyway
* Favor Prometheus for cloud-agnostic metrics, aggregation, and alerting
* Simplify clusters to come with a single NLB
* Listen for apiserver traffic on port 6443 and forward
to controllers (with healthy apiserver)
* Listen for ingress traffic on ports 80/443 and forward
to workers (with healthy ingress controller)
* Reduce cost of default clusters by 1 NLB ($18.14/month)
* Keep using CNAME records to the `ingress_dns_name` NLB and
the nginx-ingress addon for Ingress (up to a few million RPS)
* Users with heavy traffic (many million RPS) can create their
own separate NLB(s) for Ingress and use the new output worker
target groups
* Fix issue where additional worker pools come with an
extraneous network load balancer
* Adjust firewall rules, security groups, cloud load balancers,
and generated kubeconfig's
* Facilitates some future simplifications and cost reductions
* Bare-Metal users who exposed kube-apiserver on a WAN via their
router or load balancer will need to adjust its configuration.
This is uncommon, most apiserver are on LAN and/or behind VPN
so no routing infrastructure is configured with the port number
* Use Kubelet bearer token authn/authz to scrape metrics
* Drop RBAC permission from nodes/proxy to nodes/metrics
* Stop proxying kubelet scrapes through the apiserver, since
this required higher privilege (nodes/proxy) and can add
load to the apiserver on large clusters
* Replace os_channel variable with os_image to align naming
across clouds. Users who set this option to stable, beta, or
alpha should now set os_image to coreos-stable, coreos-beta,
or coreos-alpha.
* Default os_image to coreos-stable. This continues to use
the most recent image from the stable channel as always.
* Allow Container Linux derivative Flatcar Linux by setting
os_image to `flatcar-stable`, `flatcar-beta`, `flatcar-alpha`
* Raise minimum Terraform version to v0.11.0
* Terraform v0.11.x has been supported since Typhoon v1.9.2
and Terraform v0.10.x was last released in Nov 2017. I'd like
to stop worrying about v0.10.x and remove migration docs as
a later followup
* Migration docs docs/topics/maintenance.md#terraform-v011x
* Add `worker_price` to allow worker spot instances. Defaults
to empty string for the worker autoscaling group to use regular
on-demand instances.
* Add `spot_price` to internal `workers` module for spot worker
pools
* Note: Unlike GCP `preemptible` workers, spot instances require
you to pick a bid price.
* Expose etcd metrics to workers so Prometheus can
run on a worker, rather than a controller
* Drop temporary firewall rules allowing Prometheus
to run on a controller and scrape targes
* Related to https://github.com/poseidon/typhoon/pull/175
* Use etcd v3.3 --listen-metrics-urls to expose only metrics
data via http://0.0.0.0:2381 on controllers
* Add Prometheus discovery for etcd peers on controller nodes
* Temporarily drop two noisy Prometheus alerts
* Change EBS volume type from `standard` ("prior generation)
to `gp2`. Prometheus alerts are tuned for SSDs
* Other platforms have fast enough disks by default
* AWS and Google Cloud make use of auto-scaling groups
and managed instance groups, respectively. As such, the
kubeconfig is already held in cloud user-data
* Controller instances are provisioned with a kubeconfig
from user-data. Its redundant to use a Terraform remote
file copy step for the kubeconfig.
* Introduce the ability to support Container Linux Config
"snippets" for controllers and workers on cloud platforms.
This allows end-users to customize hosts by providing Container
Linux configs that are additively merged into the base configs
defined by Typhoon. Config snippets are validated, merged, and
show any errors during `terraform plan`
* Example uses include adding systemd units, network configs,
mounts, files, raid arrays, or other disk provisioning features
provided by Container Linux Configs (using Ignition low-level)
* Requires terraform-provider-ct v0.2.1 plugin
* Add a node-role.kubernetes.io/controller="true" node label
to controllers so Prometheus service discovery can filter to
services that only run on controllers (i.e. masters)
* Leave node-role.kubernetes.io/master="" untouched as its
a Kubernetes convention
* This reverts commit cce4537487.
* Provider passing to child modules is complex and the behavior
changed between Terraform v0.10 and v0.11. We're continuing to
allow both versions so this change should be reverted. For the
time being, those using our internal Terraform modules will have
to be aware of the minimum version for AWS and GCP providers,
there is no good way to do enforcement.
* Allow groups of workers to be defined and joined to
a cluster (i.e. worker pools)
* Move worker resources into a Terraform submodule
* Output variables needed for passing to worker pools
* Add usage docs for AWS worker pools (advanced)
* Template terraform-render-bootkube's multi-line kubeconfig
output using the right indentation
* Add `kubeconfig` variable to google-cloud controllers and
workers Terraform submodules
* Remove `kubeconfig_*` variables from google-cloud controllers
and workers Terraform submodules
* Set Kubelet search path for flexvolume plugins
to /var/lib/kubelet/volumeplugins
* Add support for flexvolume plugins on AWS, GCE, and DO
* See 9548572d98 which added flexvolume support for bare-metal
* Remove PersistentVolumeLabel admission controller flag
* Switch Deployments and DaemonSets to apps/v1
* Minor update to pod-checkpointer image version