* Set Kubelet cgroup driver to systemd when Flatcar Linux edge
is chosen
Note: Typhoon module status assumes use of the stable variant of
an OS channel/stream. Its possible to use earlier variants and
those are sometimes tested or developed against, but stable is
the recommendation
* Remove node label `node.kubernetes.io/master` from controller nodes
* Use `node.kubernetes.io/controller` (present since v1.9.5,
[#160](https://github.com/poseidon/typhoon/pull/160)) to node select controllers
* Rename controller NoSchedule taint from `node-role.kubernetes.io/master` to
`node-role.kubernetes.io/controller`
* Tolerate the new taint name for workloads that may run on controller nodes
and stop tolerating `node-role.kubernetes.io/master` taint
* Kubelet `--lock-file` and `--exit-on-lock-contention` date
back to usage of bootkube and at one point running Kubelet
in a "self-hosted" style whereby an on-host Kubelet (rkt)
started pods, but then a Kubelet DaemonSet was scheduled
and able to take over (hence self-hosted). `lock-file` and
`exit-on-lock-contention` flags supported this pivot. The
pattern has been out of favor (in bootkube too) for years
because of dueling Kubelet complexity
* Typhoon runs Kubelet as a container via an on-host systemd
unit using podman (Fedora CoreOS) or rkt (Flatcar Linux). In
fact, Typhoon no longer uses bootkube or control plane pivot
(let alone Kubelet pivot) and uses static pods since v1.16.0
* https://github.com/poseidon/typhoon/pull/536
* Enable terraform-provider-ct `strict` mode for parsing
Container Linux Configs and snippets
* Fix Container Linux Config systemd unit syntax `enable`
(old) to `enabled`
* Align with Fedora CoreOS which uses strict mode already
* Build Kubelet container images internally and publish
to Quay and Dockerhub (new) as an alternative in case of
registry outage or breach
* Use our infra to provide single and multi-arch (default)
Kublet images for possible future use
* Docs: Show how to use alternative Kubelet images via
snippets and a systemd dropin (builds on #737)
Changes:
* Update docs with changes to Kubelet image building
* If you prefer to trust images built by Quay/Dockerhub,
automated image builds are still available with unique
tags (albeit with some limitations):
* Quay automated builds are tagged `build-{short_sha}`
(limit: only amd64)
* Dockerhub automated builts are tagged `build-{tag}`
and `build-master` (limit: only amd64, no shas)
Links:
* Kubelet: https://github.com/poseidon/kubelet
* Docs: https://typhoon.psdn.io/topics/security/#container-images
* Registries:
* quay.io/poseidon/kubelet
* docker.io/psdn/kubelet
* Write the systemd kubelet.service to use `KUBELET_IMAGE`
as the Kubelet. This provides a nice way to use systemd
dropins to temporarily override the image (e.g. during a
registry outage)
Note: Only Typhoon Kubelet images and registries are supported.
* Enable bootstrap token authentication on kube-apiserver
* Generate the bootstrap.kubernetes.io/token Secret that
may be used as a bootstrap token
* Generate a bootstrap kubeconfig (with a bootstrap token)
to be securely distributed to nodes. Each Kubelet will use
the bootstrap kubeconfig to authenticate to kube-apiserver
as `system:bootstrappers` and send a node-unique CSR for
kube-controller-manager to automatically approve to issue
a Kubelet certificate and kubeconfig (expires in 72 hours)
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the `system:node-bootstrapper`
ClusterRole
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the csr nodeclient ClusterRole
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the csr selfnodeclient ClusterRole
* Enable NodeRestriction admission controller to limit the
scope of Node or Pod objects a Kubelet can modify to those of
the node itself
* Ability for a Kubelet to delete its Node object is retained
as preemptible nodes or those in auto-scaling instance groups
need to be able to remove themselves on shutdown. This need
continues to have precedence over any risk of a node deleting
itself maliciously
Security notes:
1. Issued Kubelet certificates authenticate as user `system:node:NAME`
and group `system:nodes` and are limited in their authorization
to perform API operations by Node authorization and NodeRestriction
admission. Previously, a Kubelet's authorization was broader. This
is the primary security motivation.
2. The bootstrap kubeconfig credential has the same sensitivity
as the previous generated TLS client-certificate kubeconfig.
It must be distributed securely to nodes. Its compromise still
allows an attacker to obtain a Kubelet kubeconfig
3. Bootstrapping Kubelet kubeconfig's with a limited lifetime offers
a slight security improvement.
* An attacker who obtains the kubeconfig can likely obtain the
bootstrap kubeconfig as well, to obtain the ability to renew
their access
* A compromised bootstrap kubeconfig could plausibly be handled
by replacing the bootstrap token Secret, distributing the token
to new nodes, and expiration. Whereas a compromised TLS-client
certificate kubeconfig can't be revoked (no CRL). However,
replacing a bootstrap token can be impractical in real cluster
environments, so the limited lifetime is mostly a theoretical
benefit.
* Cluster CSR objects are visible via kubectl which is nice
4. Bootstrapping node-unique Kubelet kubeconfigs means Kubelet
clients have more identity information, which can improve the
utility of audits and future features
Rel: https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/
Rel: https://github.com/poseidon/terraform-render-bootstrap/pull/185
* In v1.18.0, kubectl apply would fail to apply manifests if any
single manifest was unable to validate. For example, if a CRD and
CR were defined in the same directory, apply would fail since the
CR would be invalid as the CRD wouldn't exist
* Typhoon temporary workaround was to separate CNI CRD manifests
and explicitly apply them first. No longer needed in v1.18.1+
* Kubernetes v1.18.1 restored the prior behavior where kubectl apply
applies as many valid manifests as it can. In the example above, the
CRD would be applied and the CR could be applied if the kubectl apply
was re-run (allowing for apply loops).
* Upstream fix: https://github.com/kubernetes/kubernetes/pull/89864
* Fix bootstrap error for missing `manifests-networking/crd*yaml`
when `networking = "flannel"`
* Cleanup manifest-networking directory left during bootstrap
* Regressed in v1.18.0 changes for Calico https://github.com/poseidon/typhoon/pull/675
* Kubernetes plans to stop releasing the hyperkube container image
* Upstream will continue to publish `kube-apiserver`, `kube-controller-manager`,
`kube-scheduler`, and `kube-proxy` container images to `k8s.gcr.io`
* Upstream will publish Kubelet only as a binary for distros to package,
either as a DEB/RPM on traditional distros or a container image on
container-optimized operating systems
* Typhoon will package the upstream Kubelet (checksummed) and its
dependencies as a container image for use on CoreOS Container Linux,
Flatcar Linux, and Fedora CoreOS
* Update the Typhoon container image security policy to list
`quay.io/poseidon/kubelet`as an official distributed artifact
Hyperkube: https://github.com/kubernetes/kubernetes/pull/88676
Kubelet Container Image: https://github.com/poseidon/kubelet
Kubelet Quay Repo: https://quay.io/repository/poseidon/kubelet
* Quay has historically generated ACI signatures for images to
facilitate rkt's notions of verification (it allowed authors to
actually sign images, though `--trust-keys-from-https` is in use
since etcd and most authors don't sign images). OCI standardization
didn't adopt verification ideas and checking signatures has fallen
out of favor.
* Fix an issue where Quay no longer seems to be generating ACI
signatures for new images (e.g. quay.io/coreos/etcd:v.3.4.4)
* Don't be alarmed by rkt `--insecure-options=image`. It refers
to disabling image signature checking (i.e. docker pull doesn't
check signatures either)
* System containers for Kubelet and bootstrap have transitioned
to the docker:// transport, so there is precedent and this brings
all the system containers on Container Linux controllers into
alignment
* Change kubelet.service on Container Linux nodes to ExecStart Kubelet
inline to replace the use of the host OS kubelet-wrapper script
* Express rkt run flags and volume mounts in a clear, uniform way to
make the Kubelet service easier to audit, manage, and understand
* Eliminate reliance on a Container Linux kubelet-wrapper script
* Typhoon for Fedora CoreOS developed a kubelet.service that similarly
uses an inline ExecStart (except with podman instead of rkt) and a
more minimal set of volume mounts. Adopt the volume improvements:
* Change Kubelet /etc/kubernetes volume to read-only
* Change Kubelet /etc/resolv.conf volume to read-only
* Remove unneeded /var/lib/cni volume mount
Background:
* kubelet-wrapper was added in CoreOS around the time of Kubernetes v1.0
to simplify running a CoreOS-built hyperkube ACI image via rkt-fly. The
script defaults are no longer ideal (e.g. rkt's notion of trust dates
back to quay.io ACI image serving and signing, which informed the OCI
standard images we use today, though they still lack rkt's signing ideas).
* Shipping kubelet-wrapper was regretted at CoreOS, but remains in the
distro for compatibility. The script is not updated to track hyperkube
changes, but it is stable and kubelet.env overrides bridge most gaps
* Typhoon Container Linux nodes have used kubelet-wrapper to rkt/rkt-fly
run the Kubelet via the official k8s.gcr.io hyperkube image using overrides
(new image registry, new image format, restart handling, new mounts, new
entrypoint in v1.17).
* Observation: Most of what it takes to run a Kubelet container is defined
in Typhoon, not in kubelet-wrapper. The wrapper's value is now undermined
by having to workaround its dated defaults. Typhoon may be better served
defining Kubelet.service explicitly
* Typhoon for Fedora CoreOS developed a kubelet.service without the use
of a host OS kubelet-wrapper which is both clearer and eliminated some
volume mounts
* Rename Container Linux Config (CLC) files to *.yaml to align
with Fedora CoreOS Config (FCC) files and for syntax highlighting
* Replace common uses of Terraform `element` (which wraps around)
with `list[index]` syntax to surface index errors
* Allow generated assets (TLS materials, manifests) to be
securely distributed to controller node(s) via file provisioner
(i.e. ssh-agent) as an assets bundle file, rather than relying
on assets being locally rendered to disk in an asset_dir and
then securely distributed
* Change `asset_dir` from required to optional. Left unset,
asset_dir defaults to "" and no assets will be written to
files on the machine that runs terraform apply
* Enhancement: Managed cluster assets are kept only in Terraform
state, which supports different backends (GCS, S3, etcd, etc) and
optional encryption. terraform apply accesses state, runs in-memory,
and distributes sensitive materials to controllers without making
use of local disk (simplifies use in CI systems)
* Enhancement: Improve asset unpack and layout process to position
etcd certificates and control plane certificates more cleanly,
without unneeded secret materials
Details:
* Terraform file provisioner support for distributing directories of
contents (with unknown structure) has been limited to reading from a
local directory, meaning local writes to asset_dir were required.
https://github.com/poseidon/typhoon/issues/585 discusses the problem
and newer or upcoming Terraform features that might help.
* Observation: Terraform provisioner support for single files works
well, but iteration isn't viable. We're also constrained to Terraform
language features on the apply side (no extra plugins, no shelling out)
and CoreOS / Fedora tools on the receive side.
* Take a map representation of the contents that would have been splayed
out in asset_dir and pack/encode them into a single file format devised
for easy unpacking. Use an awk one-liner on the receive side to unpack.
In pratice, this has worked well and its rather nice that a single
assets file is transferred by file provisioner (all or none)
Rel: https://github.com/poseidon/terraform-render-bootstrap/pull/162