* Quay has historically generated ACI signatures for images to
facilitate rkt's notions of verification (it allowed authors to
actually sign images, though `--trust-keys-from-https` is in use
since etcd and most authors don't sign images). OCI standardization
didn't adopt verification ideas and checking signatures has fallen
out of favor.
* Fix an issue where Quay no longer seems to be generating ACI
signatures for new images (e.g. quay.io/coreos/etcd:v.3.4.4)
* Don't be alarmed by rkt `--insecure-options=image`. It refers
to disabling image signature checking (i.e. docker pull doesn't
check signatures either)
* System containers for Kubelet and bootstrap have transitioned
to the docker:// transport, so there is precedent and this brings
all the system containers on Container Linux controllers into
alignment
* Fix the last minor issue for Fedora CoreOS clusters to pass CNCF's
Kubernetes conformance tests
* Kubelet supports a seldom used feature `kubectl logs --limit-bytes=N`
to trim a log stream to a desired length. Kubelet handles this in the
CRI driver. The Kubelet docker shim only supports the limit bytes
feature when Docker is configured with the default `json-file` logging
driver
* CNCF conformance tests started requiring limit-bytes be supported,
indirectly forcing the log driver choice until either the Kubelet or
the conformance tests are fixed
* Fedora CoreOS defaults Docker to use `journald` (desired). For now,
as a workaround to offer conformant clusters, the log driver can
be set back to `json-file`. RHEL CoreOS likely won't have noticed the
non-conformance since its using crio runtime
* https://github.com/kubernetes/kubernetes/issues/86367
Note: When upstream has a fix, the aim is to drop the docker config
override and use the journald default
* Use Fedora CoreOS production download streams (change)
* Use live PXE kernel and initramfs images
* https://getfedora.org/coreos/download/
* Update docs example to use public images (cache is still
recommended at large scale) and stable stream
* Inlining the Kubelet service removed the need for the
kubelet.env file declared in Ignition. However, on some
platforms, this removed the guarantee that /etc/kubernetes
exists. Bare-Metal and DigitalOcean distribute the kubelet
kubeconfig through Terraform file provisioner (scp) and
place it in (now missing) /etc/kubernetes
* https://github.com/poseidon/typhoon/pull/606
* Fix bare-metal and DigitalOcean Ignition to ensure the
desired directory exists following first boot from disk
* Cloud platforms with worker pools distribute the kubeconfig
through Ignition user data (no impact or need)
* Configure kube-proxy --metrics-bind-address=0.0.0.0 (default
127.0.0.1) to serve metrics on 0.0.0.0:10249
* Add firewall rules to allow Prometheus (resides on a worker) to
scrape kube-proxy service endpoints on controllers or workers
* Add a clusterIP: None service for kube-proxy endpoint discovery
* Change kubelet.service on Container Linux nodes to ExecStart Kubelet
inline to replace the use of the host OS kubelet-wrapper script
* Express rkt run flags and volume mounts in a clear, uniform way to
make the Kubelet service easier to audit, manage, and understand
* Eliminate reliance on a Container Linux kubelet-wrapper script
* Typhoon for Fedora CoreOS developed a kubelet.service that similarly
uses an inline ExecStart (except with podman instead of rkt) and a
more minimal set of volume mounts. Adopt the volume improvements:
* Change Kubelet /etc/kubernetes volume to read-only
* Change Kubelet /etc/resolv.conf volume to read-only
* Remove unneeded /var/lib/cni volume mount
Background:
* kubelet-wrapper was added in CoreOS around the time of Kubernetes v1.0
to simplify running a CoreOS-built hyperkube ACI image via rkt-fly. The
script defaults are no longer ideal (e.g. rkt's notion of trust dates
back to quay.io ACI image serving and signing, which informed the OCI
standard images we use today, though they still lack rkt's signing ideas).
* Shipping kubelet-wrapper was regretted at CoreOS, but remains in the
distro for compatibility. The script is not updated to track hyperkube
changes, but it is stable and kubelet.env overrides bridge most gaps
* Typhoon Container Linux nodes have used kubelet-wrapper to rkt/rkt-fly
run the Kubelet via the official k8s.gcr.io hyperkube image using overrides
(new image registry, new image format, restart handling, new mounts, new
entrypoint in v1.17).
* Observation: Most of what it takes to run a Kubelet container is defined
in Typhoon, not in kubelet-wrapper. The wrapper's value is now undermined
by having to workaround its dated defaults. Typhoon may be better served
defining Kubelet.service explicitly
* Typhoon for Fedora CoreOS developed a kubelet.service without the use
of a host OS kubelet-wrapper which is both clearer and eliminated some
volume mounts
* Rename Container Linux Config (CLC) files to *.yaml to align
with Fedora CoreOS Config (FCC) files and for syntax highlighting
* Replace common uses of Terraform `element` (which wraps around)
with `list[index]` syntax to surface index errors
* Original tutorials favored including the platform (e.g.
google-cloud) in modules (e.g. google-cloud-yavin). Prefer
naming conventions where each module / cluster has a simple
name (e.g. yavin) since the platform is usually redundant
* Retain the example cluster naming themes per platform
* Allow generated assets (TLS materials, manifests) to be
securely distributed to controller node(s) via file provisioner
(i.e. ssh-agent) as an assets bundle file, rather than relying
on assets being locally rendered to disk in an asset_dir and
then securely distributed
* Change `asset_dir` from required to optional. Left unset,
asset_dir defaults to "" and no assets will be written to
files on the machine that runs terraform apply
* Enhancement: Managed cluster assets are kept only in Terraform
state, which supports different backends (GCS, S3, etcd, etc) and
optional encryption. terraform apply accesses state, runs in-memory,
and distributes sensitive materials to controllers without making
use of local disk (simplifies use in CI systems)
* Enhancement: Improve asset unpack and layout process to position
etcd certificates and control plane certificates more cleanly,
without unneeded secret materials
Details:
* Terraform file provisioner support for distributing directories of
contents (with unknown structure) has been limited to reading from a
local directory, meaning local writes to asset_dir were required.
https://github.com/poseidon/typhoon/issues/585 discusses the problem
and newer or upcoming Terraform features that might help.
* Observation: Terraform provisioner support for single files works
well, but iteration isn't viable. We're also constrained to Terraform
language features on the apply side (no extra plugins, no shelling out)
and CoreOS / Fedora tools on the receive side.
* Take a map representation of the contents that would have been splayed
out in asset_dir and pack/encode them into a single file format devised
for easy unpacking. Use an awk one-liner on the receive side to unpack.
In pratice, this has worked well and its rather nice that a single
assets file is transferred by file provisioner (all or none)
Rel: https://github.com/poseidon/terraform-render-bootstrap/pull/162
* Set small CPU requests on static pods kube-apiserver,
kube-controller-manager, and kube-scheduler to align with
upstream tooling and for edge cases
* Effectively, a practical case for these requests hasn't been
observed. However, a small static pod CPU request may offer
a slight benefit if a controller became overloaded and the
below mechanisms were insufficient
Existing safeguards:
* Control plane nodes are tainted to isolate them from
ordinary workloads. Even dense workloads can only compress
CPU resources on worker nodes.
* Control plane static pods use the highest priority class, so
contention favors control plane pods (over say node-exporter)
and CPU is compressible too.
See: https://github.com/poseidon/terraform-render-bootstrap/pull/161
* Update terraform-render-bootstrap module to adopt the
Terrform v0.12 templatefile function feature to replace
the use of terraform-provider-template's `template_dir`
* Require Terraform v0.12.6+ which adds `for_each`
Background:
* `template_dir` was added to `terraform-provider-template`
to add support for template directory rendering in CoreOS
Tectonic Kubernetes distribution (~2017)
* Terraform v0.12 introduced a native `templatefile` function
and v0.12.6 introduced native `for_each` support (July 2019)
that makes it possible to replace `template_dir` usage
* Define bare-metal `controllers` and `workers` as a complex type
list(object{name=string, mac=string, domain=string}) to allow
clusters with many machines to be defined more cleanly
* Remove `controller_names` list variable
* Remove `controller_macs` list variable
* Remove `controller_domains` list variable
* Remove `worker_names` list variable
* Remove `worker_macs` list variable
* Remove `worker_domains` list variable
* Review variables available in bare-metal kubernetes modules
for Container Linux and Fedora CoreOS
* Deprecate cluster_domain_suffix variable
* Remove deprecated container_linux_oem variable
* Fix issue (present since bootkube->bootstrap switch) where
controller asset copy could fail if /etc/kubernetes/manifests
wasn't created in time on platforms using path activation for
the Kubelet (observed on DigitalOcean, also possible on
bare-metal)
* Drop `node-role.kubernetes.io/master` and
`node-role.kubernetes.io/node` node labels
* Kubelet (v1.16) now rejects the node labels used
in the kubectl get nodes ROLES output
* https://github.com/kubernetes/kubernetes/issues/75457
* Rename render module from bootkube to bootstrap. Avoid
confusion with the kubernetes-incubator/bootkube tool since
it is no longer used
* Use the poseidon/terraform-render-bootstrap Terraform module
(formerly poseidon/terraform-render-bootkube)
* https://github.com/poseidon/terraform-render-bootkube/pull/149
* Run a kube-apiserver, kube-scheduler, and kube-controller-manager
static pod on each controller node. Previously, kube-apiserver was
self-hosted as a DaemonSet across controllers and kube-scheduler
and kube-controller-manager were a Deployment (with 2 or
controller_count many replicas).
* Remove bootkube bootstrap and pivot to self-hosted
* Remove pod-checkpointer manifests (no longer needed)
* Run a kube-apiserver, kube-scheduler, and kube-controller-manager
static pod on each controller node. Previously, kube-apiserver was
self-hosted as a DaemonSet across controllers and kube-scheduler
and kube-controller-manager were a Deployment (with 2 or
controller_count many replicas).
* Remove bootkube bootstrap and pivot to self-hosted
* Remove pod-checkpointer manifests (no longer needed)
* Run a kube-apiserver, kube-scheduler, and kube-controller-manager
static pod on each controller node. Previously, kube-apiserver was
self-hosted as a DaemonSet across controllers and kube-scheduler
and kube-controller-manager were a Deployment (with 2 or
controller_count many replicas).
* Remove bootkube bootstrap and pivot to self-hosted
* Remove pod-checkpointer manifests (no longer needed)
* For Fedora CoreOS, only HTTPS downloads are available.
Any iPXE firmware must be compiled to support TLS fetching.
* For Container Linux, using public kernel/initramfs images
defaults to using HTTPS, but can be set to HTTP for iPXE
firmware that hasn't been custom compiled to support TLS
* Kubelets can hit the ContainerManager Delegation issue and fail
to start (noted in 72c94f1c6). Its unclear why this occurs only
to some Kubelets (possibly an ordering concern)
* QoS cgroups remain a goal
* When a controller node is affected, bootstrapping fails, which
makes other development harder. Temporarily disable QoS on
controllers only. This should safeguard bring-up and hopefully
still allow the issue to occur on some workers for debugging
* Use the xz compressed images published by Fedora testing,
instead of gzippped tarballs. This is possible because the
initramfs now supports xz and coreos-installer 0.8 was added
* Separate bios and uefi raw images are no longer needed
* First semi-working cluster using 30.307-metal-bios
* Enable CPU, Memory, and BlockIO accounting
* Mount /var/lib/kubelet with `rshare` so mounted tmpfs Secrets
(e.g. serviceaccount's) are visible within appropriate containers
* SELinux relabel /etc/kubernetes so install-cni init containers
can write the CNI config to the host /etc/kubernetes/net.d
* SELinux relabel /var/lib/kubelet so ConfigMaps can be read
by containers
* SELinux relabel /opt/cni/bin so install-cni containers can
write CNI binaries to the host
* Set net.ipv4_conf.all.rp_filter to 1 (not 2, loose mode) to
satisfy Calico requirement
* Enable the QoS cgroup hierarchy for pod workloads (kubepods,
burstable, besteffort). Mount /sys/fs/cgroup and
/sys/fs/cgroup/systemd into the Kubelet. Its still rather racy
whether Kubelet will fail on ContainerManager Delegation
* Allow updating terraform-provider-ct to any release
beyond v0.3.2, but below v1.0. This relaxes the prior
constraint that allowed only v0.3.y provider versions
* Run kube-apiserver as a non-root user (nobody). User
no longer needs to bind low number ports.
* On most platforms, the kube-apiserver load balancer listens
on 6443 and fronts controllers with kube-apiserver pods using
port 6443. Google Cloud TCP proxy load balancers cannot listen
on 6443. However, GCP's load balancer can be made to listen on
443, while kube-apiserver uses 6443 across all platforms.
* For Container Linux or Flatcar Linux alpha/beta/stable,
continue using the `cgroupfs` driver
* For Fedora Atomic, continue using the `systemd` driver
* For Flatcar Linux Edge, use the `systemd` driver
* Replace v0.11 bracket type hints with Terraform v0.12 list expressions
* Use expression syntax instead of interpolated strings, where suggested
* Update bare-metal tutorial
* Define `clc_snippets` type constraint map(list(string))
* Define Terraform and plugin version requirements in versions.tf
* Require matchbox ~> 0.3.0 to support Terraform v0.12
* Require ct ~> 0.3.2 to support Terraform v0.12
* Fix to remove a trailing slash that was erroneously introduced
in the scripting that updated from v1.14.1 to v1.14.2
* Workaround before this fix was to re-run `terraform init`
* Change flannel port from the kernel default 8472 to the
IANA assigned VXLAN port 4789
* Update firewall rules or security groups for VXLAN
* Why now? Calico now offers its own VXLAN backend so
standardizing on the IANA port will simplify config
* https://github.com/coreos/flannel/blob/master/Documentation/backends.md#vxlan
* Add an `enable_aggregation` variable to enable the kube-apiserver
aggregation layer for adding extension apiservers to clusters
* Aggregation is **disabled** by default. Typhoon recommends you not
enable aggregation. Consider whether less invasive ways to achieve your
goals are possible and whether those goals are well-founded
* Enabling aggregation and extension apiservers increases the attack
surface of a cluster and makes extensions a part of the control plane.
Admins must scrutinize and trust any extension apiserver used.
* Passing a v1.14 CNCF conformance test requires aggregation be enabled.
Having an option for aggregation keeps compliance, but retains the
stricter security posture on default clusters
* Add calico-ipam CRDs and RBAC permissions
* Switch IPAM from host-local to calico-ipam
* `calico-ipam` subnets `ippools` (defaults to pod CIDR) into
`ipamblocks` (defaults to /26, but set to /24 in Typhoon)
* `host-local` subnets the pod CIDR based on the node PodCIDR
field (set via kube-controller-manager as /24's)
* Create a custom default IPv4 IPPool to ensure the block size
is kept at /24 to allow 110 pods per node (Kubernetes default)
* Retaining host-local was slightly preferred, but Calico v3.6
is migrating all usage to calico-ipam. The codepath that skipped
calico-ipam for KDD was removed
* https://docs.projectcalico.org/v3.6/release-notes/
* Require an iPXE-enabled network boot environment with support for
TLS downloads. PXE clients must chainload to iPXE firmware compiled
with `DOWNLOAD_PROTO_HTTPS` enabled ([crypto](https://ipxe.org/crypto))
* iPXE's pre-compiled firmware binaries do _not_ enable HTTPS. Admins
should build iPXE from source with support enabled
* Affects the Container Linux and Flatcar Linux install profiles that
pull from public downloads. No effect when cached_install=true
or using Fedora Atomic, as those download from Matchbox
* Add `download_protocol` variable. Recognizing boot firmware TLS
support is difficult in some environments, set the protocol to "http"
for the old behavior (discouraged)