* Rename Container Linux Config (CLC) files to *.yaml to align
with Fedora CoreOS Config (FCC) files and for syntax highlighting
* Replace common uses of Terraform `element` (which wraps around)
with `list[index]` syntax to surface index errors
* Allow generated assets (TLS materials, manifests) to be
securely distributed to controller node(s) via file provisioner
(i.e. ssh-agent) as an assets bundle file, rather than relying
on assets being locally rendered to disk in an asset_dir and
then securely distributed
* Change `asset_dir` from required to optional. Left unset,
asset_dir defaults to "" and no assets will be written to
files on the machine that runs terraform apply
* Enhancement: Managed cluster assets are kept only in Terraform
state, which supports different backends (GCS, S3, etcd, etc) and
optional encryption. terraform apply accesses state, runs in-memory,
and distributes sensitive materials to controllers without making
use of local disk (simplifies use in CI systems)
* Enhancement: Improve asset unpack and layout process to position
etcd certificates and control plane certificates more cleanly,
without unneeded secret materials
Details:
* Terraform file provisioner support for distributing directories of
contents (with unknown structure) has been limited to reading from a
local directory, meaning local writes to asset_dir were required.
https://github.com/poseidon/typhoon/issues/585 discusses the problem
and newer or upcoming Terraform features that might help.
* Observation: Terraform provisioner support for single files works
well, but iteration isn't viable. We're also constrained to Terraform
language features on the apply side (no extra plugins, no shelling out)
and CoreOS / Fedora tools on the receive side.
* Take a map representation of the contents that would have been splayed
out in asset_dir and pack/encode them into a single file format devised
for easy unpacking. Use an awk one-liner on the receive side to unpack.
In pratice, this has worked well and its rather nice that a single
assets file is transferred by file provisioner (all or none)
Rel: https://github.com/poseidon/terraform-render-bootstrap/pull/162
* Fix issue (present since bootkube->bootstrap switch) where
controller asset copy could fail if /etc/kubernetes/manifests
wasn't created in time on platforms using path activation for
the Kubelet (observed on DigitalOcean, also possible on
bare-metal)
* Rename render module from bootkube to bootstrap. Avoid
confusion with the kubernetes-incubator/bootkube tool since
it is no longer used
* Use the poseidon/terraform-render-bootstrap Terraform module
(formerly poseidon/terraform-render-bootkube)
* https://github.com/poseidon/terraform-render-bootkube/pull/149
* Run a kube-apiserver, kube-scheduler, and kube-controller-manager
static pod on each controller node. Previously, kube-apiserver was
self-hosted as a DaemonSet across controllers and kube-scheduler
and kube-controller-manager were a Deployment (with 2 or
controller_count many replicas).
* Remove bootkube bootstrap and pivot to self-hosted
* Remove pod-checkpointer manifests (no longer needed)
* Replace v0.11 bracket type hints with Terraform v0.12 list expressions
* Use expression syntax instead of interpolated strings, where suggested
* Update Google Cloud tutorial and worker pools documentation
* Define Terraform and plugin version requirements in versions.tf
* Require google ~> 2.5 to support Terraform v0.12
* Require ct ~> 0.3.2 to support Terraform v0.12
* Allow multi-controller clusters on Google Cloud
* GCP regional network load balancers have a long open
bug in which requests originating from a backend instance
are routed to the instance itself, regardless of whether
the health check passes or not. As a result, only the 0th
controller node registers. We've recommended just using
single master GCP clusters for a while
* https://issuetracker.google.com/issues/67366622
* Workaround issue by switching to a GCP TCP Proxy load
balancer. TCP proxy lb routes traffic to a backend service
(global) of instance group backends. In our case, spread
controllers across 3 zones (all regions have 3+ zones) and
organize them in 3 zonal unmanaged instance groups that
serve as backends. Allows multi-controller cluster creation
* GCP network load balancers only allowed legacy HTTP health
checks so kubelet 10255 was checked as an approximation of
controller health. Replace with TCP apiserver health checks
to detect unhealth or unresponsive apiservers.
* Drawbacks: GCP provision time increases, tailed logs now
timeout (similar tradeoff in AWS), controllers only span 3
zones instead of the exact number in the region
* Workaround in Typhoon has been known and posted for 5 months,
but there still appears to be no better alternative. Its
probably time to support multi-master and accept the downsides
* AWS and Google Cloud make use of auto-scaling groups
and managed instance groups, respectively. As such, the
kubeconfig is already held in cloud user-data
* Controller instances are provisioned with a kubeconfig
from user-data. Its redundant to use a Terraform remote
file copy step for the kubeconfig.
* Require the controller module to be completed before starting
to remote exec bootkube start, otherwise its possible the controller
nodes were created, but not the network load balancer
* Change controllers from a managed group to individual instances
* Create discrete DNS records to each controller's private IP for etcd
* Change etcd to run on-host, across controllers (etcd-member.service)
* Reduce time to bootstrap a cluster
* Deprecate self-hosted-etcd on the Google Cloud platform
* Remove k8s_domain_name input variable, the controller DNS
record will be "${var.cluster_name}.${dns_zone}"
* Rename dns_base_zone to dns_zone
* Rename dns_base_zone_name to dns_zone_name