* Use a single admin kubeconfig for initial bootkube bootstrap
and for use by a human admin. Previously, an admin kubeconfig
without a named context was used for bootstrap and direct usage
with KUBECONFIG=path, while one with a named context was used
for `kubectl config use-context` style usage. Confusing.
* Provide the admin kubeconfig via `assets/auth/kubeconfig`,
`assets/auth/CLUSTER-config`, or output `kubeconfig-admin`
* terraform-render-bootkube module deprecated kube_dns_service_ip
output in favor of cluster_dns_service_ip
* Rename k8s_dns_service_ip to cluster_dns_service_ip for
consistency too
* Kubelets can use a lower-privilege TLS client certificate with
Org system:nodes and a binding to the system:node ClusterRole
* Admin kubeconfig's continue to belong to Org system:masters to
provide cluster-admin (available in assets/auth/kubeconfig or as
a Terraform output kubeconfig-admin)
* Remove bare-metal output variable kubeconfig
* Add ServiceAccounts and ClusterRoleBindings for kube-apiserver
and kube-scheduler
* Remove the ClusterRoleBinding for the kube-system default ServiceAccount
* Rename the CA certificate CommonName for consistency with upstream
* T3 is the next generation general purpose burstable
instance type. Compared with t2.small, the t3.small is
cheaper, has 2 vCPU (instead of 1) and provides 5 Gbps
of pod-to-pod bandwidth (instead of 1 Gbps)
* Add kube-router for pod networking and NetworkPolicy
as an experiment
* Experiments are not documented or supported in any way,
and may be removed without notice. They have known issues
and aren't enabled without special options.
* Remove bullet about isolating workloads on workers, its
now common practice and new users will assume it
* List advanced features available in each module
* Fix erroneous Kubernetes version listing for Google Cloud
Fedora Atomic
* Calico Felix has been reporting anonymous usage data about the
version and cluster size, which violates Typhoon's privacy policy
where analytics should be opt-in only
* Add a variable enable_reporting (default: false) to allow opting
in to reporting usage data to Calico (or future components)
* loop sends an initial query to detect infinite forwarding
loops in configured upstream DNS servers and fast exit with
an error (its a fatal misconfiguration on the network that
will otherwise cause resolvers to consume memory/CPU until
crashing, masking the problem)
* https://github.com/coredns/coredns/tree/master/plugin/loop
* loadbalance randomizes the ordering of A, AAAA, and MX records
in responses to provide round-robin load balancing (as usual,
clients may still cache responses though)
* https://github.com/coredns/coredns/tree/master/plugin/loadbalance
* Prefer InternalIP and ExternalIP over the node's hostname,
to match upstream behavior and kubeadm
* Previously, hostname-override was used to set node names
to internal IP's to work around some cloud providers not
resolving hostnames for instances (e.g. DO droplets)
* Updating the `terraform-provider-ct` plugin is known to produce
a `user_data` diff in all pre-existing clusters. Applying the
diff to pre-existing cluster destroys controller nodes
* Ignore changes to controller `user_data`. Once all managed
clusters use a release containing this change, it is possible
to update the `terraform-provider-ct` plugin (worker `user_data`
will still be modified)
* Changing the module `ref` for an existing cluster and
re-applying is still NOT supported (although this PR
would protect controllers from being destroyed)
* Run at least two replicas of CoreDNS to better support
rolling updates (previously, kube-dns had a pod nanny)
* On multi-master clusters, set the CoreDNS replica count
to match the number of masters (e.g. a 3-master cluster
previously used replicas:1, now replicas:3)
* Add AntiAffinity preferred rule to favor distributing
CoreDNS pods across controller nodes nodes
* Continue to ensure scheduler and controller-manager run
at least two replicas to support performing kubectl edits
on single-master clusters (no change)
* For multi-master clusters, set scheduler / controller-manager
replica count to the number of masters (e.g. a 3-master cluster
previously used replicas:2, now replicas:3)
* Add new bird and felix readiness checks
* Read MTU from ConfigMap veth_mtu
* Add RBAC read for serviceaccounts
* Remove invalid description from CRDs
* Release v1.11.1 erroneously left Fedora Atomic clusters using
the v1.11.0 Kubelet. The rest of the control plane ran v1.11.1
as expected
* Update Kubelet from v1.11.0 to v1.11.1 so Fedora Atomic matches
Container Linux
* Container Linux modules were not affected
* Basic monitoring (free) is sufficient for casual console browsing
* Detailed monitoring (paid) is not leveraged for CloudWatch anyway
* Favor Prometheus for cloud-agnostic metrics, aggregation, and alerting
* Simplify clusters to come with a single NLB
* Listen for apiserver traffic on port 6443 and forward
to controllers (with healthy apiserver)
* Listen for ingress traffic on ports 80/443 and forward
to workers (with healthy ingress controller)
* Reduce cost of default clusters by 1 NLB ($18.14/month)
* Keep using CNAME records to the `ingress_dns_name` NLB and
the nginx-ingress addon for Ingress (up to a few million RPS)
* Users with heavy traffic (many million RPS) can create their
own separate NLB(s) for Ingress and use the new output worker
target groups
* Fix issue where additional worker pools come with an
extraneous network load balancer
* Adjust firewall rules, security groups, cloud load balancers,
and generated kubeconfig's
* Facilitates some future simplifications and cost reductions
* Bare-Metal users who exposed kube-apiserver on a WAN via their
router or load balancer will need to adjust its configuration.
This is uncommon, most apiserver are on LAN and/or behind VPN
so no routing infrastructure is configured with the port number
* Use Kubelet bearer token authn/authz to scrape metrics
* Drop RBAC permission from nodes/proxy to nodes/metrics
* Stop proxying kubelet scrapes through the apiserver, since
this required higher privilege (nodes/proxy) and can add
load to the apiserver on large clusters
* Replace os_channel variable with os_image to align naming
across clouds. Users who set this option to stable, beta, or
alpha should now set os_image to coreos-stable, coreos-beta,
or coreos-alpha.
* Default os_image to coreos-stable. This continues to use
the most recent image from the stable channel as always.
* Allow Container Linux derivative Flatcar Linux by setting
os_image to `flatcar-stable`, `flatcar-beta`, `flatcar-alpha`
* Raise minimum Terraform version to v0.11.0
* Terraform v0.11.x has been supported since Typhoon v1.9.2
and Terraform v0.10.x was last released in Nov 2017. I'd like
to stop worrying about v0.10.x and remove migration docs as
a later followup
* Migration docs docs/topics/maintenance.md#terraform-v011x
* Add `worker_price` to allow worker spot instances. Defaults
to empty string for the worker autoscaling group to use regular
on-demand instances.
* Add `spot_price` to internal `workers` module for spot worker
pools
* Note: Unlike GCP `preemptible` workers, spot instances require
you to pick a bid price.
* Observed frequent kube-scheduler and controller-manager
restarts with Calico as the CNI provider. Root cause was
unclear since control plane was functional and tests of
pod to pod network connectivity passed
* Root cause: Calico sets up cali* and tunl* network interfaces
for containers on hosts. NetworkManager tries to manage these
interfaces. It periodically disconnected veth pairs. Logs did
not surface this issue since its not an error per-se, just Calico
and NetworkManager dueling for control. Kubernetes correctly
restarted pods failing health checks and ensured 2 replicas were
running so the control plane functioned mostly normally. Pod to
pod connecitivity was only affected occassionally. Pain to debug.
* Solution: Configure NetworkManager to ignore the Calico ifaces
per Calico's recommendation. Cloud-init writes files after
NetworkManager starts, so a restart is required on first boot. On
subsequent boots, the file is present so no restart is needed
* (containerized) kube-proxy warns that it is unable to
load the ip_vs kernel module despite having the correct
mounts. Atomic uses an xz compressed module and modprobe
in the container was not compiled with compression support
* Workaround issue for now by always loading ip_vs on-host
* https://github.com/kubernetes/kubernetes/issues/60
* http://www.projectatomic.io/blog/2018/04/fedora-atomic-20-apr-18/
* Atomic publishes nightly AMIs which sometimes don't boot
or have issues. Until there is a source of reliable AMIs,
pin the best known working AMI
* Rel 66a66f0d18544591ffdbf8fae9df790113c93d72
* Use the upstream bootkube image packaged with the
required metadata to be usable as a system container
under systemd
* Run bootkube with runc so no host level components
use Docker any more. Docker is still the runtime
* Remove bootkube script and old systemd unit
* Change kubelet system image to use --cgroups-per-qos=true
(default) instead of false
* Change kubelet system image to use --enforce-node-allocatable=pods
instead of an empty string
* Fix kubelet port-forward on Google Cloud / Fedora Atomic
* Mount the host's /etc/hosts in kubelet system containers
* Problem: kubelet runc system containers on Atomic were not
mounting the host's /etc/hosts, like rkt-fly does on Container
Linux. `kubectl port-forward` calls socat with localhost. DNS
servers on AWS, DO, and in many bare-metal environments resolve
localhost to the caller as a convenience. Google Cloud notably
does not nor is it required to do so and this surfaced the
missing /etc/hosts in runc kubelet namespaces.
* Enable etcd v3.3 metrics to expose metrics for
scraping by Prometheus
* Use k8s.gcr.io instead of gcr.io/google_containers
* Add flexvolume plugin mount to controller manager
* Update kube-dns from v1.14.8 to v1.14.9
* Mount /opt/cni/bin in kubelet system container so
CNI plugin binaries can be found. Before, flannel
worked because the kubelet falls back to flannel
plugin baked into the hyperkube (undesired)
* Move the CNI bin install location later, since /opt
changes may be lost between ostree rebases
* Use the upstream hyperkube image packaged with the
required metadata to be usable as a system container
under systemd
* Fix port-forward since socat is included
* Update manifests for Kubernetes v1.10.0
* Update etcd from v3.3.2 to v3.3.3
* Add disk_type optional variable on AWS
* Remove redundant kubeconfig copy on AWS
* Distribute etcd secres only to controllers
* Organize module variables and ssh steps
* Expose etcd metrics to workers so Prometheus can
run on a worker, rather than a controller
* Drop temporary firewall rules allowing Prometheus
to run on a controller and scrape targes
* Related to https://github.com/poseidon/typhoon/pull/175