* Enable terraform-provider-ct `strict` mode for parsing
Container Linux Configs and snippets
* Fix Container Linux Config systemd unit syntax `enable`
(old) to `enabled`
* Align with Fedora CoreOS which uses strict mode already
* Rename Container Linux Config (CLC) files to *.yaml to align
with Fedora CoreOS Config (FCC) files and for syntax highlighting
* Replace common uses of Terraform `element` (which wraps around)
with `list[index]` syntax to surface index errors
* Rename render module from bootkube to bootstrap. Avoid
confusion with the kubernetes-incubator/bootkube tool since
it is no longer used
* Use the poseidon/terraform-render-bootstrap Terraform module
(formerly poseidon/terraform-render-bootkube)
* https://github.com/poseidon/terraform-render-bootkube/pull/149
* google_compute_backend_services use nested blocks to define
backends (instance groups heterogeneous controllers)
* Use Terraform v0.12.x dynamic blocks so the apiserver backend
service can refer to (up to zone-many) controller instance groups
* Previously, with Terraform v0.11.x, the apiserver backend service
had to list a fixed set of backends to span controller nodes across
zones in multi-controller setups. 3 backends were used because each
GCP region offered at least 3 zones. Single-controller clusters had
the cosmetic ugliness of unused instance groups
* Allow controllers to span more than 3 zones if avilable in a
region (e.g. currently only us-central1, with 4 zones)
Related:
* https://www.terraform.io/docs/providers/google/r/compute_backend_service.html
* https://www.terraform.io/docs/configuration/expressions.html#dynamic-blocks
* Replace v0.11 bracket type hints with Terraform v0.12 list expressions
* Use expression syntax instead of interpolated strings, where suggested
* Update Google Cloud tutorial and worker pools documentation
* Define Terraform and plugin version requirements in versions.tf
* Require google ~> 2.5 to support Terraform v0.12
* Require ct ~> 0.3.2 to support Terraform v0.12
* Support terraform-provider-google v1.19.0, v1.19.1, v1.20.0
and v2.0+ (and allow for future 2.x.y releases)
* Require terraform-provider-google v1.19.0 or newer. v1.19.0
introduced `network_interface` fields `network_ip` and `nat_ip`
to deprecate `address` and `assigned_nat_ip`. Those deprecated
fields are removed in terraform-provider-google v2.0
* https://github.com/terraform-providers/terraform-provider-google/releases/tag/v2.0.0
* Intel Haswell or better is available in every zone around the world
* Neither Kubernetes nor Typhoon have a particular minimum processor
family. However, a few Google Cloud zones still default to Sandy/Ivy
bridge (scheduled to shift April 2019). Price is only based on machine
type so it is beneficial to opt for the next processor family
* Intel Haswell is a suitable minimum since it still allows plenty of
liberty in choosing any region or machine type
* Likely a slight increase to preemption probability in a few zones,
but any lower probability on Sandy/Ivy bridge is due to lower
desirability as they're phased out
* https://cloud.google.com/compute/docs/regions-zones/
* terraform-render-bootkube module deprecated kube_dns_service_ip
output in favor of cluster_dns_service_ip
* Rename k8s_dns_service_ip to cluster_dns_service_ip for
consistency too
* Kubelets can use a lower-privilege TLS client certificate with
Org system:nodes and a binding to the system:node ClusterRole
* Admin kubeconfig's continue to belong to Org system:masters to
provide cluster-admin (available in assets/auth/kubeconfig or as
a Terraform output kubeconfig-admin)
* Remove bare-metal output variable kubeconfig
* Updating the `terraform-provider-ct` plugin is known to produce
a `user_data` diff in all pre-existing clusters. Applying the
diff to pre-existing cluster destroys controller nodes
* Ignore changes to controller `user_data`. Once all managed
clusters use a release containing this change, it is possible
to update the `terraform-provider-ct` plugin (worker `user_data`
will still be modified)
* Changing the module `ref` for an existing cluster and
re-applying is still NOT supported (although this PR
would protect controllers from being destroyed)
* Allow multi-controller clusters on Google Cloud
* GCP regional network load balancers have a long open
bug in which requests originating from a backend instance
are routed to the instance itself, regardless of whether
the health check passes or not. As a result, only the 0th
controller node registers. We've recommended just using
single master GCP clusters for a while
* https://issuetracker.google.com/issues/67366622
* Workaround issue by switching to a GCP TCP Proxy load
balancer. TCP proxy lb routes traffic to a backend service
(global) of instance group backends. In our case, spread
controllers across 3 zones (all regions have 3+ zones) and
organize them in 3 zonal unmanaged instance groups that
serve as backends. Allows multi-controller cluster creation
* GCP network load balancers only allowed legacy HTTP health
checks so kubelet 10255 was checked as an approximation of
controller health. Replace with TCP apiserver health checks
to detect unhealth or unresponsive apiservers.
* Drawbacks: GCP provision time increases, tailed logs now
timeout (similar tradeoff in AWS), controllers only span 3
zones instead of the exact number in the region
* Workaround in Typhoon has been known and posted for 5 months,
but there still appears to be no better alternative. Its
probably time to support multi-master and accept the downsides