* Switch Ingress from regional network load balancers to global
HTTP/TCP Proxy load balancing
* Reduce cost by ~$19/month per cluster. Google bills the first 5
global and regional forwarding rules separately. Typhoon clusters now
use 3 global and 0 regional forwarding rules.
* Worker pools no longer include an extraneous load balancer. Remove
worker module's `ingress_static_ip` output.
* Add `ingress_static_ipv4` output variable
* Add `worker_instance_group` output to allow custom global load
balancing
* Deprecate `controllers_ipv4_public` module output
* Deprecate `ingress_static_ip` module output. Use `ingress_static_ipv4`
* Both flannel and Calico support host port via `portmap`
* Allows writing NetworkPolicies that reference ingress pods in `from`
or `to`. HostNetwork pods were difficult to write network policy for
since they could circumvent the CNI network to communicate with pods on
the same node.
* Basic monitoring (free) is sufficient for casual console browsing
* Detailed monitoring (paid) is not leveraged for CloudWatch anyway
* Favor Prometheus for cloud-agnostic metrics, aggregation, and alerting
* Simplify clusters to come with a single NLB
* Listen for apiserver traffic on port 6443 and forward
to controllers (with healthy apiserver)
* Listen for ingress traffic on ports 80/443 and forward
to workers (with healthy ingress controller)
* Reduce cost of default clusters by 1 NLB ($18.14/month)
* Keep using CNAME records to the `ingress_dns_name` NLB and
the nginx-ingress addon for Ingress (up to a few million RPS)
* Users with heavy traffic (many million RPS) can create their
own separate NLB(s) for Ingress and use the new output worker
target groups
* Fix issue where additional worker pools come with an
extraneous network load balancer
* Adjust firewall rules, security groups, cloud load balancers,
and generated kubeconfig's
* Facilitates some future simplifications and cost reductions
* Bare-Metal users who exposed kube-apiserver on a WAN via their
router or load balancer will need to adjust its configuration.
This is uncommon, most apiserver are on LAN and/or behind VPN
so no routing infrastructure is configured with the port number
* Choose the Container Linux derivative Flatcar Linux on
bare-metal by setting os_channel to flatcar-stable, flatcar-beta
or flatcar-alpha
* As with Container Linux from Red Hat, the version (os_version)
must correspond to the channel being used
* Thank you to @dongsupark from Kinvolk
* Use Kubelet bearer token authn/authz to scrape metrics
* Drop RBAC permission from nodes/proxy to nodes/metrics
* Stop proxying kubelet scrapes through the apiserver, since
this required higher privilege (nodes/proxy) and can add
load to the apiserver on large clusters
* Replace os_channel variable with os_image to align naming
across clouds. Users who set this option to stable, beta, or
alpha should now set os_image to coreos-stable, coreos-beta,
or coreos-alpha.
* Default os_image to coreos-stable. This continues to use
the most recent image from the stable channel as always.
* Allow Container Linux derivative Flatcar Linux by setting
os_image to `flatcar-stable`, `flatcar-beta`, `flatcar-alpha`
* Raise minimum Terraform version to v0.11.0
* Terraform v0.11.x has been supported since Typhoon v1.9.2
and Terraform v0.10.x was last released in Nov 2017. I'd like
to stop worrying about v0.10.x and remove migration docs as
a later followup
* Migration docs docs/topics/maintenance.md#terraform-v011x
* A data volume (emptyDir) is mounted to /var/lib/prometheus
* Users could swap emptyDir for any desired volume if data
persistence is desired. Prometheus previously defaulted to
keeping its data in ./data relative to /prometheus. Override
this behavior to store data in /var/lib/prometheus
* Add `worker_price` to allow worker spot instances. Defaults
to empty string for the worker autoscaling group to use regular
on-demand instances.
* Add `spot_price` to internal `workers` module for spot worker
pools
* Note: Unlike GCP `preemptible` workers, spot instances require
you to pick a bid price.
* Allow multi-controller clusters on Google Cloud
* GCP regional network load balancers have a long open
bug in which requests originating from a backend instance
are routed to the instance itself, regardless of whether
the health check passes or not. As a result, only the 0th
controller node registers. We've recommended just using
single master GCP clusters for a while
* https://issuetracker.google.com/issues/67366622
* Workaround issue by switching to a GCP TCP Proxy load
balancer. TCP proxy lb routes traffic to a backend service
(global) of instance group backends. In our case, spread
controllers across 3 zones (all regions have 3+ zones) and
organize them in 3 zonal unmanaged instance groups that
serve as backends. Allows multi-controller cluster creation
* GCP network load balancers only allowed legacy HTTP health
checks so kubelet 10255 was checked as an approximation of
controller health. Replace with TCP apiserver health checks
to detect unhealth or unresponsive apiservers.
* Drawbacks: GCP provision time increases, tailed logs now
timeout (similar tradeoff in AWS), controllers only span 3
zones instead of the exact number in the region
* Workaround in Typhoon has been known and posted for 5 months,
but there still appears to be no better alternative. Its
probably time to support multi-master and accept the downsides
* Terraform v0.11.4 introduced changes to remote-exec
that mean Typhoon bare-metal clusters require multiple
runs of terraform apply to ssh and bootstrap.
* Bare-metal installs PXE boot a live instance to install
to disk and then reboot from disk as controllers/workers.
Terraform remote-exec has no way to "know" to wait until
the reboot has occurred to kickoff Kubernetes bootstrap.
Previously Typhoon created a "debug" user during this
install phase to allow an admin to SSH, but remote-exec
would hang, trying to connect as user "core". Terraform
v0.11.4 changes this behavior so remote-exec fails and
a user must re-run terraform apply until succeeding.
* A new way to "trick" remote-exec into waiting for the
reboot into the disk install is to run SSH on a non-standard
port during the disk install. This retains the ability
for an admin to SSH during install (most distros don't have
this) and fixes the issue so only a single run of terraform
apply is needed.
* https://github.com/hashicorp/terraform/pull/17359#issuecomment-376415464
* Use etcd v3.3 --listen-metrics-urls to expose only metrics
data via http://0.0.0.0:2381 on controllers
* Add Prometheus discovery for etcd peers on controller nodes
* Temporarily drop two noisy Prometheus alerts
* Change EBS volume type from `standard` ("prior generation)
to `gp2`. Prometheus alerts are tuned for SSDs
* Other platforms have fast enough disks by default
* Calico isn't viable on Digital Ocean because their firewalls
do not support IP-IP protocol. Its not viable to run a cluster
without firewalls just to use Calico.
* Remove the caveat note. Don't allow users to shoot themselves
in the foot
* Allow groups of workers to be defined and joined to
a cluster (i.e. worker pools)
* Move worker resources into a Terraform submodule
* Output variables needed for passing to worker pools
* Add usage docs for AWS worker pools (advanced)
* Set defaults for internal worker module's count,
machine_type, and os_image
* Allow "pools" of homogeneous workers to be created
using the google-cloud/kubernetes/workers module
* Template terraform-render-bootkube's multi-line kubeconfig
output using the right indentation
* Add `kubeconfig` variable to google-cloud controllers and
workers Terraform submodules
* Remove `kubeconfig_*` variables from google-cloud controllers
and workers Terraform submodules
* Upcoming releases may begin to use features that require
the `terraform-provider-ct` plugin v0.2.1
* New users should use `terraform-provider-ct` v0.2.1. Existing
users can safely drop-in replace their v0.2.0 plugin with v0.2.1
as well (location referenced in ~/.terraformrc).
* See https://github.com/poseidon/typhoon/pull/145
* Set Kubelet search path for flexvolume plugins
to /var/lib/kubelet/volumeplugins
* Add support for flexvolume plugins on AWS, GCE, and DO
* See 9548572d98 which added flexvolume support for bare-metal
* Stop maintaining Kubernetes Dashboard manifests. Dashboard takes
an unusual approch to security and is often a security weak point.
* Recommendation: Use `kubectl` and avoid using the dashboard. If
you must use the dashboard, explore hardening and consider using an
authenticating proxy rather than the dashboard's auth features
* Deployments now belong to the apps/v1 API group
* DaemonSets now belong to the apps/v1 API group
* RBAC types now belong to the rbac.authorization.k8s.io/v1 API group
* Add flannel service account and limited RBAC cluster role
* Change DaemonSets to tolerate NoSchedule and NoExecute taints
* Remove deprecated apiserver --etcd-quorum-read flag
* Update Calico from v3.0.1 to v3.0.2
* Add Calico GlobalNetworkSet CRD
* https://github.com/poseidon/terraform-render-bootkube/pull/44
* Update CLUO from v0.4.1 to v0.5.0
* Earlier versions of CLUO fail to drain nodes on Kubernetes 1.9
so nodes drain one at a time repeatedly and Container Linux OS
updates are not applied to nodes.
* Check current OS versions via `kubectl get nodes --show-labels`
* Create separate container-linux-install profiles (and
cached-container-linux-install) for each node in a cluster
* Fix contention bug on bare-metal during `terraform apply`.
With only a global install profile, terraform would create
(or retain) the profile for each cluster and try to delete
it for each cluster being deleted. As a result, in some cases
apply had to be run multiple times before terraform's repr
of constraints was satisfied (profile deleted and recreated)
* Allow Container Linux install properties to vary between
clusters, such as using a different Container Linux channel
or version for different clusters
* Add explicit "providers" section to modules for Terraform v0.11.x
* Retain support for Terraform v0.10.4+
* Add migration guide from Terraform v0.10.x to v0.11.x for those managing
existing clusters (action required!)
* Container Linux stable and beta now provide Docker 17.09 (instead
of 1.12). Recommend images which provide 17.09.
* Older clusters (with CLUO addon) auto-update node's Container Linux version
and will begin using Docker 17.09.
* Adapt the coreos/prometheus-operator alerting rules for Typhoon,
https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus/manifests
* Add controller manager and scheduler shim services to let
prometheus discover them via service endpoints
* Fix several alert rules to use service endpoint discovery
* A few rules still don't do much, but they default to green