* Use the official Kinvolk Flatcar Linux image on Google Cloud
* Change `os_image` from a custom image name to `flatcar-stable`
(default), `flatcar-beta`, or `flatcar-alpha` (**action required**)
* Change `os_image` from a required to an optional variable
* Promote Typhoon on Flatcar Linux / Google Cloud to stable
* Remove docs about needing to upload a Flatcar Linux image
manually on Google Cloud and drop support for custom images
* Terraform v1.1 changed the behavior of provisioners and
`remote-exec` in a way that breaks support for expansions
in commands (including file provisioner, where `destination`
is part of an `scp` command)
* Terraform will likely revert the change eventually, but I
suspect it will take a while
* Instead, we can stop relying on Terraform's expansion
behavior. `/home/core` is a suitable choice for `$HOME` on
both Flatcar Linux and Fedora CoreOS (harldink `/var/home/core`)
Rel: https://github.com/hashicorp/terraform/issues/30243
* Both Flatcar Linux and Fedora CoreOS use systemd-resolved,
but they setup /etc/resolv.conf symlinks differently
* Prefer using /run/systemd/resolve/resolv.conf directly, which
also updates to reflect runtime changes (e.g. resolvectl)
* Change `enable_aggregation` default from false to true
* These days, Kubernetes control plane components emit annoying
messages related to assumptions baked into the Kubernetes API
Aggregation Layer if you don't enable it. Further the conformance
tests force you to remember to enable it if you care about passing
those
* This change is motivated by eliminating annoyances, rather than
any enthusiasm for Kubernetes' aggregation features
Rel: https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
* Mount both /etc/ssl/certs and /etc/pki into control plane static
pods and kube-proxy, rather than choosing one based a variable
(set based on Flatcar Linux or Fedora CoreOS)
* Remove deprecated `--port` from `kube-scheduler` static Pod
* Update `null` provider to allow use of v3.1.x releases,
instead of being stuck on v2.1.2
* Update min versions in terraform-render-boostrap
https://github.com/poseidon/terraform-render-bootstrap/pull/287
* Document the recommended versions of Terraform cloud providers
* Remove `/sys/fs/cgroup/systemd` mount since Flatcar Linux
uses cgroups v2
* Flatcar Linux's `docker` switched from the `cgroupfs` to
`systemd` driver without notice
* Kubernetes v1.22.0 disabled kube-controller-manager insecure
port, which was used internally for Prometheus metrics scraping
* Configure Prometheus to discover and scrape endpoints for
kube-scheduler and kube-controller-manager via the authenticated
https ports, via bearer token
* Change firewall ports to allow Prometheus (on worker nodes)
to scrape kube-scheduler and kube-controller-manager targets
that run on controller(s) with hostNetwork
* Disable the insecure port on kube-scheduler
* On Fedora CoreOS, Cilium cross-node service IP load balancing
stopped working for a time (first observable as CoreDNS pods
located on worker nodes not being able to reach the kubernetes
API service 10.3.0.1). This turned out to have two parts:
* Fedora CoreOS switched to cgroups v2 by default. In our early
testing with cgroups v2, Calico (default) was used. With the
cgroups v2 change, SELinux policy denied some eBPF operations.
Since fixed in all Fedora CoreOS channels
* Cilium requires new mounts to support cgroups v2, which are
added here
* https://github.com/coreos/fedora-coreos-tracker/issues/292
* https://github.com/coreos/fedora-coreos-tracker/issues/881
* https://github.com/cilium/cilium/pull/16259
* Add `node_taints` variable to worker modules to set custom
initial node taints on cloud platforms that support auto-scaling
worker pools of heterogeneous nodes (i.e. AWS, Azure, GCP)
* Worker pools could use custom `node_labels` to allowed workloads
to select among differentiated nodes, while custom `node_taints`
allows a worker pool's nodes to be tainted as special to prevent
scheduling, except by workloads that explicitly tolerate the
taint
* Expose `daemonset_tolerations` in AWS, Azure, and GCP kubernetes
cluster modules, to determine whether `kube-system` components
should tolerate the custom taint (advanced use covered in docs)
Rel: #550, #663Closes#429