* Build Kubelet container images internally and publish
to Quay and Dockerhub (new) as an alternative in case of
registry outage or breach
* Use our infra to provide single and multi-arch (default)
Kublet images for possible future use
* Docs: Show how to use alternative Kubelet images via
snippets and a systemd dropin (builds on #737)
Changes:
* Update docs with changes to Kubelet image building
* If you prefer to trust images built by Quay/Dockerhub,
automated image builds are still available with unique
tags (albeit with some limitations):
* Quay automated builds are tagged `build-{short_sha}`
(limit: only amd64)
* Dockerhub automated builts are tagged `build-{tag}`
and `build-master` (limit: only amd64, no shas)
Links:
* Kubelet: https://github.com/poseidon/kubelet
* Docs: https://typhoon.psdn.io/topics/security/#container-images
* Registries:
* quay.io/poseidon/kubelet
* docker.io/psdn/kubelet
* Promote DigitalOcean from alpha to beta for Fedora
CoreOS and Flatcar Linux
* Upgrade mkdocs-material and PyPI packages for docs
* Replace docs mentions of Container Linux with Flatcar
Linux and move docs/cl to docs/flatcar-linux
* Deprecate CoreOS Container Linux support. Its still
usable for some time, but start removing docs
* Enable bootstrap token authentication on kube-apiserver
* Generate the bootstrap.kubernetes.io/token Secret that
may be used as a bootstrap token
* Generate a bootstrap kubeconfig (with a bootstrap token)
to be securely distributed to nodes. Each Kubelet will use
the bootstrap kubeconfig to authenticate to kube-apiserver
as `system:bootstrappers` and send a node-unique CSR for
kube-controller-manager to automatically approve to issue
a Kubelet certificate and kubeconfig (expires in 72 hours)
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the `system:node-bootstrapper`
ClusterRole
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the csr nodeclient ClusterRole
* Add ClusterRoleBinding for bootstrap token subjects
(`system:bootstrappers`) to have the csr selfnodeclient ClusterRole
* Enable NodeRestriction admission controller to limit the
scope of Node or Pod objects a Kubelet can modify to those of
the node itself
* Ability for a Kubelet to delete its Node object is retained
as preemptible nodes or those in auto-scaling instance groups
need to be able to remove themselves on shutdown. This need
continues to have precedence over any risk of a node deleting
itself maliciously
Security notes:
1. Issued Kubelet certificates authenticate as user `system:node:NAME`
and group `system:nodes` and are limited in their authorization
to perform API operations by Node authorization and NodeRestriction
admission. Previously, a Kubelet's authorization was broader. This
is the primary security motivation.
2. The bootstrap kubeconfig credential has the same sensitivity
as the previous generated TLS client-certificate kubeconfig.
It must be distributed securely to nodes. Its compromise still
allows an attacker to obtain a Kubelet kubeconfig
3. Bootstrapping Kubelet kubeconfig's with a limited lifetime offers
a slight security improvement.
* An attacker who obtains the kubeconfig can likely obtain the
bootstrap kubeconfig as well, to obtain the ability to renew
their access
* A compromised bootstrap kubeconfig could plausibly be handled
by replacing the bootstrap token Secret, distributing the token
to new nodes, and expiration. Whereas a compromised TLS-client
certificate kubeconfig can't be revoked (no CRL). However,
replacing a bootstrap token can be impractical in real cluster
environments, so the limited lifetime is mostly a theoretical
benefit.
* Cluster CSR objects are visible via kubectl which is nice
4. Bootstrapping node-unique Kubelet kubeconfigs means Kubelet
clients have more identity information, which can improve the
utility of audits and future features
Rel: https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/
Rel: https://github.com/poseidon/terraform-render-bootstrap/pull/185
* Kubernetes plans to stop releasing the hyperkube container image
* Upstream will continue to publish `kube-apiserver`, `kube-controller-manager`,
`kube-scheduler`, and `kube-proxy` container images to `k8s.gcr.io`
* Upstream will publish Kubelet only as a binary for distros to package,
either as a DEB/RPM on traditional distros or a container image on
container-optimized operating systems
* Typhoon will package the upstream Kubelet (checksummed) and its
dependencies as a container image for use on CoreOS Container Linux,
Flatcar Linux, and Fedora CoreOS
* Update the Typhoon container image security policy to list
`quay.io/poseidon/kubelet`as an official distributed artifact
Hyperkube: https://github.com/kubernetes/kubernetes/pull/88676
Kubelet Container Image: https://github.com/poseidon/kubelet
Kubelet Quay Repo: https://quay.io/repository/poseidon/kubelet
* Original tutorials favored including the platform (e.g.
google-cloud) in modules (e.g. google-cloud-yavin). Prefer
naming conventions where each module / cluster has a simple
name (e.g. yavin) since the platform is usually redundant
* Retain the example cluster naming themes per platform
* Change `networking` default from flannel to calico on
Azure and DigitalOcean
* AWS, bare-metal, and Google Cloud continue to default
to Calico (as they have since v1.7.5)
* Typhoon now defaults to using Calico and supporting
NetworkPolicy on all platforms
* Drop `node-role.kubernetes.io/master` and
`node-role.kubernetes.io/node` node labels
* Kubelet (v1.16) now rejects the node labels used
in the kubectl get nodes ROLES output
* https://github.com/kubernetes/kubernetes/issues/75457
* Delay changing README example. Its prominent display
on github.com may lead to new users copying it, even
though it corresponds to an "in between releases" state
and v1.14.4 doesn't exist yet
* Leave docs tutorials the same, they can reflect master
* Provide Terraform v0.11 to v0.12 migration guide. Show an
in-place strategy and a move resources strategy
* Describe in-place modifying an existing cluster and providers,
using the Terraform helper to edit syntax, and checking the
plan produces a zero diff
* Describe replacing existing clusters by creating a new config
directory for use with Terraform v0.12 only and moving resources
one by one
* Provide some limited advise on migrating non-Typhoon resources
* Introduce "calico" as a `networking` option on Azure and DigitalOcean
using Calico's new VXLAN support (similar to flannel). Flannel remains
the default on these platforms for now.
* Historically, DigitalOcean and Azure only allowed Flannel as the
CNI provider, since those platforms don't support IPIP traffic that
was previously required for Calico.
* Looking forward, its desireable for Calico to become the default
across Typhoon clusters, since it provides NetworkPolicy and a
consistent experience
* No changes to AWS, GCP, or bare-metal where Calico remains the
default CNI provider. On these platforms, IPIP mode will always
be used, since its available and more performant than vxlan
* Require an iPXE-enabled network boot environment with support for
TLS downloads. PXE clients must chainload to iPXE firmware compiled
with `DOWNLOAD_PROTO_HTTPS` enabled ([crypto](https://ipxe.org/crypto))
* iPXE's pre-compiled firmware binaries do _not_ enable HTTPS. Admins
should build iPXE from source with support enabled
* Affects the Container Linux and Flatcar Linux install profiles that
pull from public downloads. No effect when cached_install=true
or using Fedora Atomic, as those download from Matchbox
* Add `download_protocol` variable. Recognizing boot firmware TLS
support is difficult in some environments, set the protocol to "http"
for the old behavior (discouraged)
* Show creation of a PXE-enabled network boot environment when
using dnsmasq as the DHCP server
* Recommend TFTP be served from /config/tftpboot since /config
is preserved between firmware upgrades
* Recommend compiling undionly.kpxe from source to enable
TLS features
* Add a note that equal-cost multi-path service IP routing
(e.g. for ingress) requires EdgeOS v2.0. Previously, it was known
that TLS handshakes couldn't be completed with packet balacing.
I've verified this is no longer the case when using the v2.0
EdgeOS firmware, ECMP works as expected.
* T3 is the next generation general purpose burstable
instance type. Compared with t2.small, the t3.small is
cheaper, has 2 vCPU (instead of 1) and provides 5 Gbps
of pod-to-pod bandwidth (instead of 1 Gbps)
* Provide migration instructions for upgrading terraform-provider-ct
in-place for v1.12.2+ clusters
* Require switching from ~/.terraformrc to the Terraform third-party
plugins directory ~/.terraform.d/plugins/
* Require Container Linux 1688.5.3 or newer
* Switch tutorials from using ~/.terraformrc to using the 3rd-party
plugin directory so 3rd-party plugins can be pinned
* Continue to show using terraform-provider-ct v0.2.2. Updating to
a newer version is only safe once all managed clusters are v1.12.2
or higher
* Broaden internal-etcd firewall rule to allow etcd client
traffic (2379) from other controller nodes
* Previously, kube-apiservers were only able to connect to their
node's local etcd peer. While master node outages were tolerated,
reaching a healthy peer took longer than neccessary in some cases
* Reduce time needed to bootstrap a cluster
* Typhoon for Fedora Atomic uses system containers, container
images containing metadata, but built directly from upstream
and published and serve through Quay.io
* https://github.com/poseidon/system-containers
* Allow multi-controller clusters on Google Cloud
* GCP regional network load balancers have a long open
bug in which requests originating from a backend instance
are routed to the instance itself, regardless of whether
the health check passes or not. As a result, only the 0th
controller node registers. We've recommended just using
single master GCP clusters for a while
* https://issuetracker.google.com/issues/67366622
* Workaround issue by switching to a GCP TCP Proxy load
balancer. TCP proxy lb routes traffic to a backend service
(global) of instance group backends. In our case, spread
controllers across 3 zones (all regions have 3+ zones) and
organize them in 3 zonal unmanaged instance groups that
serve as backends. Allows multi-controller cluster creation
* GCP network load balancers only allowed legacy HTTP health
checks so kubelet 10255 was checked as an approximation of
controller health. Replace with TCP apiserver health checks
to detect unhealth or unresponsive apiservers.
* Drawbacks: GCP provision time increases, tailed logs now
timeout (similar tradeoff in AWS), controllers only span 3
zones instead of the exact number in the region
* Workaround in Typhoon has been known and posted for 5 months,
but there still appears to be no better alternative. Its
probably time to support multi-master and accept the downsides
* Upcoming releases may begin to use features that require
the `terraform-provider-ct` plugin v0.2.1
* New users should use `terraform-provider-ct` v0.2.1. Existing
users can safely drop-in replace their v0.2.0 plugin with v0.2.1
as well (location referenced in ~/.terraformrc).
* See https://github.com/poseidon/typhoon/pull/145
* Add flannel service account and limited RBAC cluster role
* Change DaemonSets to tolerate NoSchedule and NoExecute taints
* Remove deprecated apiserver --etcd-quorum-read flag
* Update Calico from v3.0.1 to v3.0.2
* Add Calico GlobalNetworkSet CRD
* https://github.com/poseidon/terraform-render-bootkube/pull/44
* Add explicit "providers" section to modules for Terraform v0.11.x
* Retain support for Terraform v0.10.4+
* Add migration guide from Terraform v0.10.x to v0.11.x for those managing
existing clusters (action required!)
* Change controllers ASG to heterogeneous EC2 instances
* Create DNS records for each controller's private IP for etcd
* Change etcd to run on-host, across controllers (etcd-member.service)
* Reduce time to bootstrap a cluster
* Deprecate self-hosted-etcd on the AWS platform
* Change controllers from a managed group to individual instances
* Create discrete DNS records to each controller's private IP for etcd
* Change etcd to run on-host, across controllers (etcd-member.service)
* Reduce time to bootstrap a cluster
* Deprecate self-hosted-etcd on the Google Cloud platform
* Remove performance note that the GCE vs AWS network performance
is not an equal comparison. On both platforms, workers now span the
(availability) zones of a region.
* Testing host-to-host and pod-to-pod network bandwidth between nodes
(now located in different zones) showed no reduction in bandwidth