typhoon/azure/flatcar-linux/kubernetes/workers.tf

29 lines
1023 B
Terraform
Raw Normal View History

module "workers" {
source = "./workers"
name = var.cluster_name
# Azure
Add IPv6 support for Typhoon Azure clusters * Define a dual-stack virtual network with both IPv4 and IPv6 private address space. Change `host_cidr` variable (string) to a `network_cidr` variable (object) with "ipv4" and "ipv6" fields that list CIDR strings. * Define dual-stack controller and worker subnets. Disable Azure default outbound access (a deprecated fallback mechanism) * Enable dual-stack load balancing to Kubernetes Ingress by adding a public IPv6 frontend IP and LB rule to the load balancer. * Enable worker outbound IPv6 connectivity through load balancer SNAT by adding an IPv6 frontend IP and outbound rule * Configure controller nodes with a public IPv6 address to provide direct outbound IPv6 connectivity * Add an IPv6 worker backend pool. Azure requires separate IPv4 and IPv6 backend pools, though the health probe can be shared * Extend network security group rules for IPv6 source/destinations Checklist: Access to controller and worker nodes via IPv6 addresses: * SSH access to controller nodes via public IPv6 address * SSH access to worker nodes via (private) IPv6 address (via controller) Outbound IPv6 connectivity from controller and worker nodes: ``` nc -6 -zv ipv6.google.com 80 Ncat: Version 7.94 ( https://nmap.org/ncat ) Ncat: Connected to [2607:f8b0:4001:c16::66]:80. Ncat: 0 bytes sent, 0 bytes received in 0.02 seconds. ``` Serve Ingress traffic via IPv4 or IPv6 just requires setting up A and AAAA records and running the ingress controller with `hostNetwork: true` since, hostPort only forwards IPv4 traffic
2024-07-06 02:21:50 +02:00
resource_group_name = azurerm_resource_group.cluster.name
location = azurerm_resource_group.cluster.location
Add IPv6 support for Typhoon Azure clusters * Define a dual-stack virtual network with both IPv4 and IPv6 private address space. Change `host_cidr` variable (string) to a `network_cidr` variable (object) with "ipv4" and "ipv6" fields that list CIDR strings. * Define dual-stack controller and worker subnets. Disable Azure default outbound access (a deprecated fallback mechanism) * Enable dual-stack load balancing to Kubernetes Ingress by adding a public IPv6 frontend IP and LB rule to the load balancer. * Enable worker outbound IPv6 connectivity through load balancer SNAT by adding an IPv6 frontend IP and outbound rule * Configure controller nodes with a public IPv6 address to provide direct outbound IPv6 connectivity * Add an IPv6 worker backend pool. Azure requires separate IPv4 and IPv6 backend pools, though the health probe can be shared * Extend network security group rules for IPv6 source/destinations Checklist: Access to controller and worker nodes via IPv6 addresses: * SSH access to controller nodes via public IPv6 address * SSH access to worker nodes via (private) IPv6 address (via controller) Outbound IPv6 connectivity from controller and worker nodes: ``` nc -6 -zv ipv6.google.com 80 Ncat: Version 7.94 ( https://nmap.org/ncat ) Ncat: Connected to [2607:f8b0:4001:c16::66]:80. Ncat: 0 bytes sent, 0 bytes received in 0.02 seconds. ``` Serve Ingress traffic via IPv4 or IPv6 just requires setting up A and AAAA records and running the ingress controller with `hostNetwork: true` since, hostPort only forwards IPv4 traffic
2024-07-06 02:21:50 +02:00
subnet_id = azurerm_subnet.worker.id
security_group_id = azurerm_network_security_group.worker.id
backend_address_pool_ids = local.backend_address_pool_ids
worker_count = var.worker_count
vm_type = var.worker_type
os_image = var.os_image
disk_type = var.worker_disk_type
disk_size = var.worker_disk_size
ephemeral_disk = var.worker_ephemeral_disk
priority = var.worker_priority
# configuration
kubeconfig = module.bootstrap.kubeconfig-kubelet
ssh_authorized_key = var.ssh_authorized_key
azure_authorized_key = var.azure_authorized_key
service_cidr = var.service_cidr
snippets = var.worker_snippets
node_labels = var.worker_node_labels
arch = var.worker_arch
}