formations/algo/algofundoc/src/machinelearning.py
2018-08-24 14:09:25 +02:00

43 lines
1.2 KiB
Python

import pandas
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
# Load dataset
#url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
#dataset = pandas.read_csv(url, names=names)
dataset = pandas.read_csv("./data/iris.data", names=names)
print("shape")
print(dataset.shape)
print("head")
# head
print(dataset.head(20))
print("descriptions")
print(dataset.describe())
# class distribution
print(dataset.groupby('class').size())
# box and whisker plots
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
# scatter plot matrix
scatter_matrix(dataset)
plt.show()