import pandas from pandas.plotting import scatter_matrix import matplotlib.pyplot as plt from sklearn import model_selection from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC # Load dataset #url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] #dataset = pandas.read_csv(url, names=names) dataset = pandas.read_csv("./data/iris.data", names=names) print("shape") print(dataset.shape) print("head") # head print(dataset.head(20)) print("descriptions") print(dataset.describe()) # class distribution print(dataset.groupby('class').size()) # box and whisker plots dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False) plt.show() # scatter plot matrix scatter_matrix(dataset) plt.show()