algo et data science
This commit is contained in:
56
algo/algofundoc/_build/html/_sources/MachineLearning.txt
Normal file
56
algo/algofundoc/_build/html/_sources/MachineLearning.txt
Normal file
@ -0,0 +1,56 @@
|
||||
Machine learning
|
||||
=================
|
||||
|
||||
Data science (not big data yet)
|
||||
|
||||
|
||||
some links
|
||||
------------
|
||||
|
||||
numpy, scipy, matplotlib... and scikit
|
||||
|
||||
https://www.scipy.org/install.html
|
||||
https://matplotlib.org/
|
||||
http://scikit-learn.org/stable/
|
||||
|
||||
|
||||
|
||||
|
||||
installation
|
||||
--------------
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Python 3.6.5 (default, Apr 1 2018, 05:46:30)
|
||||
[GCC 7.3.0] on linux
|
||||
Type "help", "copyright", "credits" or "license" for more information.
|
||||
>>> import sys
|
||||
>>> print('Python: {}'.format(sys.version))
|
||||
Python: 3.6.5 (default, Apr 1 2018, 05:46:30)
|
||||
[GCC 7.3.0]
|
||||
>>> import scipy
|
||||
>>> print('scipy: {}'.format(scipy.__version__))
|
||||
scipy: 0.19.1
|
||||
>>> import numpy
|
||||
>>> print('numpy: {}'.format(numpy.__version__))
|
||||
numpy: 1.13.3
|
||||
>>> import matplotlib
|
||||
>>> print('matplotlib: {}'.format(matplotlib.__version__))
|
||||
matplotlib: 2.1.1
|
||||
>>> # pandas
|
||||
...
|
||||
>>> import pandas
|
||||
>>> print('pandas: {}'.format(pandas.__version__))
|
||||
pandas: 0.22.0
|
||||
>>> # scikit-learn
|
||||
... import sklearn
|
||||
|
||||
>>> print('sklearn: {}'.format(sklearn.__version__))
|
||||
sklearn
|
||||
|
||||
|
||||
|
||||
usage
|
||||
-------
|
||||
|
||||
https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
|
34
algo/algofundoc/_build/html/_sources/fil_conducteur.txt
Normal file
34
algo/algofundoc/_build/html/_sources/fil_conducteur.txt
Normal file
@ -0,0 +1,34 @@
|
||||
Fil conducteur : 1er tour des élections présidentielles 2017
|
||||
=============================================================
|
||||
|
||||
Le fil conducteur sera l’exploitation de données issues du 1er tour des élections présidentielles qui ont eu lieu en France le 23 avril 2017.
|
||||
|
||||
Les données dont on dispose sont les résultats par canton (plus de 2000 cantons). Pour chaque canton sont donnés
|
||||
|
||||
- le nombre d’inscrits
|
||||
- le nombre de votants
|
||||
- le nombre de bulletins nuls
|
||||
- le nombre de bulletins blancs
|
||||
- le nombre de voix obtenus par chacun des candidats.
|
||||
|
||||
L’objectif est d’établir
|
||||
|
||||
- les résultats au niveau national
|
||||
- la participation
|
||||
|
||||
.. figure:: images/participation_globale.png
|
||||
:width: 650
|
||||
:alt: Participation globale
|
||||
|
||||
- le scores des candidats
|
||||
|
||||
.. figure:: images/scores_1er_tour.png
|
||||
:width: 650
|
||||
:alt: Score des candidats
|
||||
|
||||
|
||||
Ce sera l'occasion de découvrir :
|
||||
|
||||
* les structures itérables, en particulier les tuples et dictionnaires
|
||||
* la lecture et l'écriture de données dans des fichiers
|
||||
* des algorithmes de tris et de recherche.
|
36
algo/algofundoc/_build/html/_sources/index.txt
Normal file
36
algo/algofundoc/_build/html/_sources/index.txt
Normal file
@ -0,0 +1,36 @@
|
||||
.. default-role:: literal
|
||||
|
||||
.. meta::
|
||||
|
||||
:description: algo tutorial
|
||||
:keywords: algorithm, python, tutorial
|
||||
|
||||
.. title:: algofundoc
|
||||
|
||||
Algo Fun
|
||||
==========
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
programmation
|
||||
liens
|
||||
MachineLearning
|
||||
pandas
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
||||
* `All modules for which code is available <_modules/index.html>`_
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
||||
|
||||
.. note:: The pyfun code is licensed under the `LGPL licence`_
|
||||
and this documentation is licensed under the `Creative Commons
|
||||
Attribution-ShareAlike 3.0 Unported License`_\ .
|
||||
|
||||
|
||||
.. _`Creative Commons Attribution-ShareAlike 3.0 Unported License`: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
|
||||
|
||||
.. _`LGPL licence`: http://www.gnu.org/licenses/lgpl.html
|
16
algo/algofundoc/_build/html/_sources/liens.txt
Normal file
16
algo/algofundoc/_build/html/_sources/liens.txt
Normal file
@ -0,0 +1,16 @@
|
||||
Liens utiles
|
||||
=============
|
||||
|
||||
- random_ datas
|
||||
- pandas_
|
||||
- ploting_
|
||||
- machine_ learning
|
||||
- making_ a machine learning
|
||||
- data_ science
|
||||
|
||||
.. _making: https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
|
||||
.. _data: https://realpython.com/tutorials/data-science/
|
||||
.. _machine: https://realpython.com/tutorials/machine-learning/
|
||||
.. _ploting: https://realpython.com/python-histograms/?__s=o2w1az6ypdj7ogdsnqwf
|
||||
.. _random: https://realpython.com/python-random/?__s=o2w1az6ypdj7ogdsnqwf
|
||||
.. _pandas: https://realpython.com/fast-flexible-pandas/?__s=o2w1az6ypdj7ogdsnqwf
|
229
algo/algofundoc/_build/html/_sources/notebooks/Pandas.ipynb.txt
Normal file
229
algo/algofundoc/_build/html/_sources/notebooks/Pandas.ipynb.txt
Normal file
@ -0,0 +1,229 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The **import** keyword is used to import a library"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"6.123233995736766e-17\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import math\n",
|
||||
"print(math.cos(math.pi / 2))\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Pandas\n",
|
||||
"======="
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" <th>col2</th>\n",
|
||||
" <th>col3</th>\n",
|
||||
" <th>col4</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>line1</th>\n",
|
||||
" <td>-0.882125</td>\n",
|
||||
" <td>2.176452</td>\n",
|
||||
" <td>0.163955</td>\n",
|
||||
" <td>-0.618232</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>line2</th>\n",
|
||||
" <td>-0.721538</td>\n",
|
||||
" <td>0.035578</td>\n",
|
||||
" <td>0.180072</td>\n",
|
||||
" <td>1.015987</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>line3</th>\n",
|
||||
" <td>-1.162355</td>\n",
|
||||
" <td>0.384632</td>\n",
|
||||
" <td>-0.674092</td>\n",
|
||||
" <td>0.162693</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>line4</th>\n",
|
||||
" <td>-1.399455</td>\n",
|
||||
" <td>-0.698512</td>\n",
|
||||
" <td>0.039420</td>\n",
|
||||
" <td>0.898408</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>line5</th>\n",
|
||||
" <td>1.755342</td>\n",
|
||||
" <td>-0.073242</td>\n",
|
||||
" <td>-1.502503</td>\n",
|
||||
" <td>-0.586194</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1 col2 col3 col4\n",
|
||||
"line1 -0.882125 2.176452 0.163955 -0.618232\n",
|
||||
"line2 -0.721538 0.035578 0.180072 1.015987\n",
|
||||
"line3 -1.162355 0.384632 -0.674092 0.162693\n",
|
||||
"line4 -1.399455 -0.698512 0.039420 0.898408\n",
|
||||
"line5 1.755342 -0.073242 -1.502503 -0.586194"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import numpy\n",
|
||||
"import pandas\n",
|
||||
"rows = ['line1', 'line2', 'line3', 'line4', 'line5']\n",
|
||||
"cols = ['col1', 'col2', 'col3', 'col4']\n",
|
||||
"from IPython.display import display\n",
|
||||
"dataframe = pandas.DataFrame(numpy.random.randn(5,4), index=rows, columns=cols)\n",
|
||||
"display(dataframe)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"reorganise a **dataframe** from datas as a dictionary with tuples as keys\n",
|
||||
"-----------------------------------------------------------------------------------------------------"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Column 1</th>\n",
|
||||
" <th>Column 2</th>\n",
|
||||
" <th>Column 3</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Cerise</td>\n",
|
||||
" <td>Lanister</td>\n",
|
||||
" <td>14</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>Paul</td>\n",
|
||||
" <td>Durand</td>\n",
|
||||
" <td>13</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>Pierre</td>\n",
|
||||
" <td>Dupont</td>\n",
|
||||
" <td>16</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>john</td>\n",
|
||||
" <td>Snow</td>\n",
|
||||
" <td>12</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Column 1 Column 2 Column 3\n",
|
||||
"0 Cerise Lanister 14\n",
|
||||
"1 Paul Durand 13\n",
|
||||
"2 Pierre Dupont 16\n",
|
||||
"3 john Snow 12"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dico = {('john', 'Snow') : 12, ('Paul', 'Durand') : 13, (\"Pierre\", \"Dupont\") : 16, (\"Cerise\", \"Lanister\") : 14}\n",
|
||||
"import pandas\n",
|
||||
"df = pandas.Series(dico).reset_index()\n",
|
||||
"df.columns = ['Column 1', 'Column 2', 'Column 3']\n",
|
||||
"from IPython.display import display\n",
|
||||
"display(df)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
14
algo/algofundoc/_build/html/_sources/pandas.txt
Normal file
14
algo/algofundoc/_build/html/_sources/pandas.txt
Normal file
@ -0,0 +1,14 @@
|
||||
pandas
|
||||
==========
|
||||
|
||||
**examples** in the jupyter_ notebooks
|
||||
|
||||
.. _jupyter: http://jupyter.org/
|
||||
|
||||
ipython and pandas::
|
||||
|
||||
jupyter notebook Pandas.ipynb
|
||||
|
||||
.. toctree::
|
||||
|
||||
notebooks/Pandas.ipynb
|
61
algo/algofundoc/_build/html/_sources/programmation.txt
Normal file
61
algo/algofundoc/_build/html/_sources/programmation.txt
Normal file
@ -0,0 +1,61 @@
|
||||
==============================
|
||||
Algorithmes et Programmation
|
||||
==============================
|
||||
|
||||
-----
|
||||
Cours
|
||||
-----
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
fil_conducteur
|
||||
|
||||
|
||||
- Structures de données séquentielles
|
||||
- Ensembles et dictionnaires
|
||||
- Algorithmes de recherche
|
||||
- Les fichiers
|
||||
- Algorithmes de tri
|
||||
|
||||
|
||||
|
||||
----
|
||||
TP
|
||||
----
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
|
||||
|
||||
|
||||
- Tester avec doctest
|
||||
- Listes
|
||||
- Gestion d’une promotion d’étudiants
|
||||
- Anagrammes
|
||||
- Analyse d’un fichier texte
|
||||
- Évaluation empirique des tris
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-----------------
|
||||
Documents annexes
|
||||
-----------------
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
|
||||
Bibliographie
|
||||
-------------
|
||||
|
||||
* Apprendre à programmer avec Python 3, Gérard Swinnen, editions Eyrolles (Chapitres 1 à 7, et chapitre 10 en partie). `Version électronique téléchargeable <http://inforef.be/swi/python.htm>`_.
|
||||
|
||||
* `Site officiel du langage Python <https://www.python.org/>`_.
|
||||
|
||||
* `Documentation officielle de la version 3.5 de Python <https://docs.python.org/3.5/>`_.
|
||||
|
||||
* `Site officiel de Thonny <http://www.thonny.org/>`_.
|
Reference in New Issue
Block a user