mise en place des cours algo + poo

This commit is contained in:
gwen
2017-08-28 17:36:36 +02:00
parent 2843f25795
commit dc02e78fff
114 changed files with 26589 additions and 0 deletions

291
algo/tronCommun/algo.txt Normal file
View File

@ -0,0 +1,291 @@
Algorithmique
=============
Al-Kharezmi, auteur du traité "Kitab al jabr w'al-muqabala", est l'inventeur
des manipulations algébriques (algèbre = **al jabr**).
C'est Léonard de Pise, dit Fibonacci, qui emprunta le nom du célèbre
mathématicien arabe du 9ème siècle, mais l'algèbre existe
depuis bien plus longtemps (Depuis Babylone, puis ensuite l'Egypte ancienne).
.. glossary::
algorithme
terme désignant une suite d'opérations constituant un schéma de calcul
ou de résolution d'un problème. C'est un processus systématique de
résolution d'un problème permettant de décrire précisément des étapes.
C'est une suite finie d'instructions permettant de donner la réponse à un
problème.
L'algorithmique est l'étude et la production de règles et de techniques
qui sont impliquées dans la définition d'algorithmes.
Implémentation d'un algorithme
------------------------------
.. glossary::
implémentation
Adaptation de la méthodologie de calculabilité au calcul effectif
sur une machine abstraite ou via un langage formel.
Il ny a pas de parcours à sens unique de lalgorithme vers limplantation.
La quête dune implantation efficace nous amène souvent à effectuer
un retour vers les algorithmes eux-mêmes, et à en modifier des points
essentiels. Laspect théorique de réflexion sur les algorithmes,
et laspect pratique de l'implémentation sont donc en symbiose.
Un existant émerge de la décomposition structurale d'un
domaine de base. Le fait essentiel, c'est la genèse des genres de l'existant les
uns à partir des autres.
L'essence d'une forme (un algorithme) se réalise au sein d'une matière qu'elle créée
(un langage). L'origine d'une matière fait naître les formes (concepts)
que sa structure dessine.
- Notion structurale de non-contradiction
- Notion extensive de "réalisation dans un champ donné"
Deux aspects réciproques : l'essence d'une forme se réalise au sein d'une
matière qu'elle crée, l'essence d'une matière faisant naître les formes que sa
structure dessine.
Abandonner l'idée trop simpliste de domaines concrets et d'opérations abstraites
qui posséderaient en eux-mêmes comme une nature de matière et une nature de
forme ; cette conception tendrait, en effet, à stabiliser les existants
mathématiques dans certains rôles immuables et ignorerait le fait que les
existants abstraits qui naissent de la structure d'un domaine plus concret
peuvent à leur tour servir de domaine de base pour la genèse d'autres existants.
L'algorithme comme généralisation de la calculabilité
------------------------------------------------------
L'importance croissante de l'informatique comme outil scientifique
impose d'élaborer un nouveau mode de description des méthodes de calcul (appelées algorithmes)
susceptible de satisfaire à la fois le critère de sécurité (maîtrise du résultat) et la possibilité
d'implémenter les calculs sur un ordinateur.
Exemple d'algorithme
---------------------
.. raw:: latex
\begin{algorithm}
\caption{L'alorithme de Bellman-Kalaba}
\begin{algorithmic}[1]
\Procedure {BellmanKalaba}{$G$, $u$, $l$, $p$}
\ForAll {$v \in V(G)$}
\State $l(v) \leftarrow \infty$
\EndFor
\State $l(u) \leftarrow 0$
\Repeat
\For {$i \leftarrow 1, n$}
\State $min \leftarrow l(v_i)$
\For {$j \leftarrow 1, n$}
\If {$min > e(v_i, v_j) + l(v_j)$}
\State $min \leftarrow e(v_i, v_j) + l(v_j)$
\State $p(i) \leftarrow v_j$
\EndIf
\EndFor
\State $l(i) \leftarrow min$
\EndFor
\State $changed \leftarrow l \not= l$
\State $l \leftarrow l$
\Until{$\neg changed$}
\EndProcedure
\Statex
\Procedure {FindPathBK}{$v$, $u$, $p$}
\If {$v = u$}
\State \textbf{Write} $v$
\Else
\State $w \leftarrow v$
\While {$w \not= u$}
\State \textbf{Write} $w$
\State $w \leftarrow p(w)$
\EndWhile
\EndIf
\EndProcedure
\end{algorithmic}
\end{algorithm}
Exemple d'algorithme avec son implémentation
---------------------------------------------
Soit l'algorithme de factorielle suivant,
.. raw:: latex
\begin{algorithm}
\caption{Algorithme de la factorielle d'un nombre}\label{factorielle}
\begin{algorithmic}[1]
\Function{factorielle}{$n$}\Comment{La fonction récursive factorielle}
\BState \emph{parametre} : $n$ entier
\If{$n = 1$}
\BState \emph{Sortie} : 1
\Else
\BState \emph{Sortie} : $n * \Call{factorielle}{n-1}$ \Comment{On appelle la fonction dans l'algorithme lui-même}
\EndIf
\EndFunction
\end{algorithmic}
\end{algorithm}
et son implémentation en python :
.. literalinclude:: code/factorielle.py
:language: python
En voici une autre implémentation (en OCaml) :
.. literalinclude:: code/factorielle.ml
:language: ocaml
On remarque que le **pseudocode** est très proche de
la syntaxe du python :
.. function:: factorielle(n:int)
::
if n=1
return 1
else
return n * factorielle(n-1)
end if
Qualité d'un algorithme
-----------------------
- correction d'un algorithme
- complétude d'un algorithme
Sémantique
Étude du sens, de la signification d'un langage
Définir la sémantique dun langage formel consiste à lui donner une
signification mathématique.
Sémantique opérationnelle
on définit la sémantique par sa mise en œuvre sur
une machine abstraite.
Sémantique dénotationnelle
on associe à chaque construction syntaxique un
objet mathématique
Sémantique axiomatique
chaque construction est décrite par la manière dont
elle transforme des propriétés ou des prédicats.
Proposition
une proposition est un énoncé qui est soit vrai, soit faux
**exemple** : ``2 + 3 = 5``. Proposition vraie.
Prédicats
Une proposition dont la valeur de vérité dépend de la valeur dune ou plusieurs variables
**Exemple** : ``n est pair`` : vrai pour n = 4 mais faux pour n = 9
Axiome
une proposition qui est supposée vraie
Un ensemble daxiomes est consistant sil nexiste pas de proposition
dont on peut démontrer quelle est à la fois vraie et fausse.
Un ensemble daxiomes est complet si, pour toute proposition, il est
possible de démontrer quelle est vraie ou fausse.
Théorème dincomplétude de Gödel (1931) : tout ensemble
consistant daxiomes pour larithmétique sur les entiers est
nécessairement incomplet.
**Les concepts de base en algorithmique sont les axiomes**
inférence
règles dinférence, règles permettant de combiner des axiomes et des
propositions vraies pour établir de nouvelles propositions vraies.
Démonstration
vérification dune proposition par une séquence de déductions logiques
à partir dun ensemble daxiomes.
Lorsque le champ donné (le domaine) ne contient qu'un nombre fini d'individus,
on peut définir un choix de valeur des variables permettant de vérifier la
proposition obtenue par la *conjonction* de tous les axiomes du système proposé.
On dit alors que ce choix *réalise* un système d'axiomes.
Il ne s'agit plus de savoir si la définition entraîne l'existence, mais de
chercher si la structure d'un système d'axiomes (*règles*) peut donner naissance
à un champ d'individus qui soutiennent entre eux les relations définies pas les
axiomes.
Concret et abstrait
--------------------
Il est possible qu'un même genre d'existant joue dans un schéma de genèse le
rôle d'abstrait par rapport à un concret de base, et soit au contraire dans une
autre genèse le concret de base d'un nouvel abstrait.
Une pareille présentation des choses implique un tel renversement par rapport
aux habitudes de pensée classiques, qu'il faut encore insister sur le sens
nouveau que reçoivent ici les expressions de "concret" et "d'abstrait".
Les systèmes d'axiomes sont souvent conçus comme des structures purement
formelles, abstraites. Ces structures sont si profondément engagées dans la
genèse de leurs réalisations, qu'il valait mieux désigner par ces termes les
structures de base.
Un système d'axiome *peut* devenir le concret de base.
Ceci permet d'exprimer non seulement l'engagement du concret dans la genèse de
l'abstrait, mais encore les relations d'imitation qui peuvent exister entre la
structure de cet abstrait et celle du concret de base.
Dans certains cas, la genèse de l'abstrait à partir d'un concret de base
s'affirme jusqu'à réaliser une imitation de structure entre ces genres
d'existants qui naissent l'un de l'autre.
**C'est pourquoi on représente souvent un algorithme en pseudo-code**,
c'est-à-dire en fait dans le mode de représentation (issu du langage préféré de la
personne qui l'exprime) dominant chez la personne qui exprime un algorithme.
Comment rendre un algorithme lisible
------------------------------------
- Le bon algorithme utilise des identifiants explicites.
- Le bon algorithme est structuré.
- Le bon algorithme est indenté.
Complexité d'un algorithme
--------------------------
On peut approximer la complexité des algorithmes.
C'est utile pour pouvoir comparer des algorithmes.
complexité
estimer la complexité d'un algorithme, c'est estimer le nombre de calculs qu'il utilise.
Si f est la fonction caractérisant exactement le coût dun algorithme et n
la taille des données, on sintéresse à la façon dont augment f(n) lorsque n augmente
on va montrer que f(n) n'augmente pas plus vite quune autre fonction
g(n). Du point de vue mathématique, on dit que la fonction f est dominée
asymptotiquement par la fonction g ce qui se note f = O(g)
- Complexité temporelle : cest le nombre dop«erations effectuées par
une machine qui exécute lalgorithme.
- Complexité spatiale : cest le nombre de positions mémoire utilisées par
une machine qui exécute lalgorithme.

View File

@ -0,0 +1,586 @@
Les fonctions et les procédures
================================
Préliminaire : rappel de théorie de cybernétique
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Théorie de l'information (Claude Shannon, 1949), (ou théorie de la communication)
Canal de transmission::
entrée -> récepteur -> émetteur -> sortie
.. glossary::
cybernétique
étude des fonctions de réflexes conditionnés du cerveau humain
utilisation au mieux en PNL ("programmation neuro-linguistique")
ou en analyse transactionnelle, ou au pire en ingérinerie sociale.
La matérialité physique est considérée comme le hardware, le génétique (le
réseau neuronal) étant assimilé au network hardware.
Les objets mentaux (fonctionnements psychologiques et épigénétiques du
cerveaux) est assimilé au logiciel, au software.
IFTTT ("if this then that") : la causalité mondaine est ramenée à un ordre de
comportement affecté à un assimilé-machine.
L'humain est ramené à une machine.
C'est articulation entre "déclencheur contextuel" et "action en réponse de"
n'est pas une "black box" mais un "feedback" qui, pour l'humain,
loin d'être ramené à une entrée/sortie, constitue un **feedback**
utile pour la connaissance de soi.
A la place, la communication est ramenée à une **boucle de rétroaction**
(comme dans un prompt) entre un système comportemental et son environnement.
La représentation sujet/objet (la perspective traditionnelle) est remplacée
par le clivage intérieur/extérieur. Behaviorisme, procédural.
L'humain est donc ramené à
- un ordonnanceur
- un comportement intrinsèque (boîte noire)
- un stimuli pavlovien (déclencheur, trigger) est considéré comme un paramètre d'entrée
- une instruction comportementale est considérée comme une action de traitement
- le résultat est observé.
Cette articulation entre "déclencheur contextuel" et "action en réponse"
est très exactement une forclusion de la profondeur monadique (Leibniz) de
l'humain à la black box informationnelle (et cybernétique).
Pour quoi faire ? Pour pirater. Pour manipuler.
Le piratage consiste à
- isoler les constantes (les procédures répétitives, les algorithmes)
- les observer (collecter les données)
afin de
- les réécrire (influence toxique, pishing - hammeçonnage)
- les détruire (attaque en règle)
Description d'une procédure
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
En programmation impérative, un programme est une suite dinstructions qui font
évoluer létat mémoire, le résultat est dans létat final de la mémoire.
- une procédure peut prendre des paramètres
- elle modifie l'état courant du système
- Déclaration des paramètes
- Déclaration du corps
- Appel de la procédure
.. raw:: latex
\begin{algorithm}
\caption{Procédure de permutation de deux entiers}\label{permutation}
\begin{algorithmic}[1]
\Procedure{permuter}{$a,b$}{}
\BState \emph{parametres}:
\State $a: \textit{int}$
\State $b: \textit{int}$
\BState \emph{locales}:
\State $z: \textit{int}$ \Comment{Une variable intermédiaire est nécessaire}
\BState \emph{corps}:
\State $z \gets a$
\State $a \gets b$
\State $b \gets z$
\EndProcedure
\State \Call{permuter}{10, 12} \Comment{appel de la procédure}
\end{algorithmic}
\end{algorithm}
effet de bord
toute modification de la mémoire ou modification d'un support externe
instruction
commande ou phrase en mesure de modifier l'état du programme ou de la machine hôte
(allocation mémoire, support externe, disque, écran...)
Une procédure ne renvoie pas de valeur, mais provoque un 'effet de bord' (écriture dans une globale, dans un flux sortant etc.).
Une procédure permet de créer une instruction nouvelle qui deviendra une primitive pour le programmeur.
Cela permet de structurer le texte source du programme et améliorer sa
lisibilité. Cela permet aussi d'appeler plusieurs fois, et à plusieurs endroit
dans le code, cette primitive.
Appel d'une procédure
~~~~~~~~~~~~~~~~~~~~~
(ex: pseudo-pascal)
**déclaration de procédure**
.. raw:: latex
\begin{algorithm}
\caption{Procédure de permutation de deux entiers}\label{appelpermutation}
\begin{algorithmic}[1]
\Procedure{permuter}{$a,b$}{}
\BState \emph{parametres}:
\State $a: \textit{int}$ \Comment{paramètres formels de la procédure}
\State $b: \textit{int}$
\BState \emph{locales}:
\State $z: \textit{int}$ \Comment{les variables locales de la procédure}
\BState \emph{corps}:
\State ... \Comment{Le corps de la procedure}
\EndProcedure
\State \Call{permuter}{10, 12} \Comment{l'appel de la procédure}
\end{algorithmic}
\end{algorithm}
- les variables x1,...,xn sont appelées *paramètres formels* de p
- les variables v1,...,vm sont appelées *les variables locales* de p
les valeurs effectivement passées en paramètres, ici `10, 12`
sont appelées **paramètres effectifs** de p
signature
C'est l'ensemble paramètre formel + resultat de l'appel
fermeture
L'ensemble procédure + variables locales + signature + parametres effectifs
est appelé une **fermeture**. C'est la procédure + son contexte qui permet
de l'instancier dans un programme.
Environnement
Contexte dévaluation d'une expression ou d'une fonction
Portée
La portée d'un identifiant (une variable) est sa condition d'utilisation dans un contexte donné
(utilisation locale uniquement, ou bien globale, ou bien locale et globale)
La portée dune liaison est la portion du code dans laquelle cette
liaison est valide (i.e. où un identifiant est lié à une expression).
.. ifconfig:: exercice
**Exercice** : Que donne ce code ?
.. code-block:: ocaml
# let x = 42 in
let y = x - 1 in x - y ;;
.. ifconfig:: correction
**Correction** :
.. code-block:: ocaml
- : int = 1
.. code-block:: ocaml
let a = 3 (* première liaison pour l'identifiant a *)
let b = 5 and c = 6
let somme = a + b + c
val somme : int = 14
let a = 45 (* deuxième liaison pour l'identifiant a *)
somme
val a : int = 45
.. ifconfig:: exercice
**Exercice** : Que donne ce code ?
.. code-block:: ocaml
let a = 3 and b = 4 and c = 8 ;;
let somme = a + b + c ;;
val somme : int = ???
let a = 44
let b = 5
let c = 1
somme
- : int = ???
.. ifconfig:: correction
.. code-block:: ocaml
let a = 3 and b = 4 and c = 8 ;;
- : int = 15
let somme = a + b + c ;;
val somme : int = 15
let a = 44
let b = 5
let c = 1
somme
- : int = 15
Même code en python
.. code-block:: python
>>> a = 1
>>> b = 2
>>> c = 3
>>> somme = a + b + c
>>> somme
6
>>> a = 56
>>> b = 5678
>>> c = 56789
>>> somme
6
>>>
Portée locale dans une expression
.. code-block:: ocaml
# let a = 2 and b = 3 and c = 4 in
let somme = a+b+c in
somme
- : int = 9
# somme ;;
Error: Unbound value somme
# a ;;
Error: Unbound value a
.. important::
Lordre dévaluation dans un let ... in ... est bien déterminé,
sans grande importance dans un cadre purement fonctionnel, mais important
en cas deffets de bord
Exemple de variable globale modifiée localement (**attention, mauvaise pratique** !) :
.. code-block:: python
>>> a = 5
>>> def print_a():
... print("La variable a = {0}.".format(a))
...
>>> print_a()
La variable a = 5.
>>> a = 8
>>> print_a()
La variable a = 8.
>>>
niveau
Le niveau dune déclaration (de variable ou de procédure) est le nombre
de procédures sous lesquelles elle est déclarée. Le programme principal
a le niveau 0.
.. code-block:: python
:linenos:
def _get_config(name):
# return config value
if not isfile(CONFIG_FILE):
raise Exception("Fichier de configuration non existant")
from ConfigParser import ConfigParser
cfg = ConfigParser(allow_no_value=True)
cfg.read(CONFIG_FILE)
if name == "SUBNETS":
return eval(cfg.get('eole', 'subnets'))
elif name == "LEASES_FILE":
DHCP_PATH = cfg.get('eole', 'container_path_dhcp')
return join('/', DHCP_PATH, 'var/lib/dhcp/dhcpd.leases')
def get_routes(*args, **kwargs):
"""
Send list of reserved IP
return list of tuple (id, machine name, IP, MAC Adress)
"""
cfg = creole_loader(load_extra=True, rw=False, owner=MODNAME,
mandatory_permissive=False)
return zip(cfg.dhcp.dhcp.id_dhcp.id_dhcp, cfg.dhcp.dhcp.id_dhcp.hostname,
cfg.dhcp.dhcp.id_dhcp.ip, cfg.dhcp.dhcp.id_dhcp.macaddress)
On voit que l'objet `cfg` ligne 6 et 7 a le même nom que l'objet `cfg` ligne 19.
C'est autorisé et les espaces de nommages sont différents.
Description d'une fonction
~~~~~~~~~~~~~~~~~~~~~~~~~~
Une fonction renvoie une valeur et ne modifie pas l'état courant du programme
en cours d'exécution ni ne réalise d'effets de bord. Elle renvoie
**toujours** quelque chose (même la valeur ``None`` qui n'est pas rien)
- une procédure peut prendre des paramètres
- elle modifie l'état courant du système
- Déclaration des paramètes
- Déclaration du corps
- Appel de la fonction
En programmation fonctionnelle, programme est un ensemble de définitions de fonctions,
un résultat est l'application dune fonction à une structure de données effective.
- composant de base : la fonction
- opération de base : lapplication
.. raw:: latex
\begin{algorithm}
\caption{Exemple de fonction}\label{fonction}
\begin{algorithmic}[1]
\Function{permuter}{$a,b$}{} \Comment{définition de la fonction}
\BState \emph{parametres}: \Comment{déclaration (noms, types) des paramètres formels}
\State $a: \textit{int}$
\State $b: \textit{int}$
\BState \emph{locales}: \Comment{déclaration (noms, types) des valeurs locales}
\State $z: \textit{int}$
\BState \emph{corps}:
\State $z \gets a$
\State $a \gets b$
\State $b \gets z$
\BState \emph{return}: \Comment{La valeur, le résulat renvoyé par la fonction}
\EndFunction
\State \Call{permuter}{10, 12} \Comment{appel de la fonction}
\BState \emph{result}:
\State (12, 10) \Comment{Le résultat effectif de la fonction après appel}
\end{algorithmic}
\end{algorithm}
.. ifconfig:: exercice
**Exercice** : factoriser le code suivant
::
Ecrire "Etes-vous marié ?"
Rep1 <- ""
TantQue Rep1 <> "Oui" et Rep1 <> "Non"
Ecrire "Tapez Oui ou Non"
Lire Rep1
FinTantQue
...
Ecrire "Avez-vous des enfants ?"
Rep2 <- ""
TantQue Rep2 <> "Oui" et Rep2 <> "Non"
Ecrire "Tapez Oui ou Non"
Lire Rep2
FinTantQue
.. ifconfig:: correction
**Correction** :
::
Fonction RepOuiNon() en caractère
Truc <- ""
TantQue Truc <> "Oui" et Truc <> "Non"
Ecrire "Tapez Oui ou Non"
Lire Truc
FinTantQue
Renvoyer Truc
Fin
Ecrire "Etes-vous marié ?"
Rep1 <- RepOuiNon()
...
Ecrire "Avez-vous des enfants ?"
Rep2 <- RepOuiNon()
Définition mathématique
~~~~~~~~~~~~~~~~~~~~~~~~~
fonction
Une fonction f dun ensemble E vers un ensemble F est une
correspondance qui associe à chaque élément de E au plus
un élément de F.
- E est appelé le domaine de définition
- F est appelé codomaine
- la **signature** de la fonction : `E → F (int -> int = <fun>)`
Exemple de signature d'une fonction
::
Fonction RepOuiNon(Msg en Caractère) en Caractère
Ecrire Msg
Truc <- ""
TantQue Truc <> "Oui" et Truc <> "Non"
Ecrire "Tapez Oui ou Non"
Lire Truc
FinTantQue
Renvoyer Truc
Fin Fonction
...
Rep1 <- RepOuiNon("Etes-vous marié ?")
...
Rep2 <- RepOuiNon("Avez-vous des enfants ?")
...
curryfication
évaluation de l'application d'une fonction
- évaluter `(f x y)`
- peut donner une **valeur fonctionnelle**
- évaluation de la valeur fonctionnelle sur une valeur des types de base
::
let g = function n -> (function p -> p + 1) n;;
Typage d'une fonction
~~~~~~~~~~~~~~~~~~~~~
.. code-block:: ocaml
# let f x y z = if x > 0 then y + x else z - x;;
val f : int -> int -> int -> int = <fun>
cest en fait une fonction à un argument qui retourne une fonction::
.. code-block:: ocaml
val f : int -> (int -> (int -> int)) = <fun>
application de f à trois valeurs
.. code-block:: ocaml
# f 1 2 3;;
- : int = 3
en programmation fonctionnelle,
les fonctions sont des valeurs comme les autres
.. code-block:: ocaml
# fun x -> x * x;;
- : int -> int = <fun>
Récursivité
~~~~~~~~~~~~
.. code-block:: ocaml
let rec fact n =
if n=0 then 1 else n * fact (n-1)
équivalent impératif utilisant une boucle
.. code-block:: c
int fact(int n){
int f = 1 ;
int i = n ;
while (i>0){
f = f * i;
i-- ;
} ;
return f ;
}
Définitions par cas
~~~~~~~~~~~~~~~~~~~
.. code-block:: ocaml
let rec fact n =
match n with
0 -> 1
| -> n * fact (n-1)
**exemple** : la fonction puissance
.. code-block:: ocaml
let rec puissance x n = match n with
0 -> 1
| -> x * puissance x (n-1)
.. ifconfig:: exercice
**Portée locale dans une fonction**
Quelles sera la valeur de la variable `a` ?
.. code-block:: python
>>> a = 1
>>> def myfunc():
... a = 2
... return a + 1
...
>>> a = myfunc() + a
.. ifconfig:: correction
Correction:
.. code-block:: python
>>> a = 1
>>> def myfunc():
... a = 2
... return a + 1
...
>>> a = myfunc() + a
>>> a
4
>>>
.. ifconfig:: exercice
**Exercice** : Portée locale dans une fonction avec variable globale
Quelles sera la valeur de la variable `a` ?
.. code-block:: python
>>> a = 1
>>> def myfunc():
... global a
... a = 2
... return a + 1
...
>>> a = myfunc() + 3
>>>
.. ifconfig:: correction
**Correction** :
.. code-block:: python
>>> a = 1
>>> def myfunc():
... global a
... a = 2
... return a + 1
...
>>> myfunc()
3
>>> a
2
>>> a = myfunc() + 3
>>> a
6
>>>

336
algo/tronCommun/langage.txt Normal file
View File

@ -0,0 +1,336 @@
Les langages de programmation
=============================
langage
Un langage de
programmation
doit permettre d'écrire des
programmes de bonne qualité
Un programme doit être :
- correct
- robuste
- lisible, bien documenté
- facile à modifier, extensible
Un langage de programmation doit permettre :
- la programmation structurée
- la structuration avec les types
- proposer un mécanisme dexceptions
- présenter des caractères de généricité, de polymorphisme et de surcharge
.. important:: La structuration et l'organisation modulaire sert à maintenir de grands programmes,
Elles sont une nécessité
Approche historique et chronologique
-------------------------------------
- Lambda calcul (1930)
- machines de Turing (1936)
- début des langages vers les années 1950 (A0, Fortran(impératif),
Lisp(impératif et fonctionnel), Cobol)
- années 60 : Simula (classes), CPL (compilation séparée)
- années 70 : C (référence du langage impératif de bas niveau), Pascal
(procédures), Smalltalk (programmation orientée objects), Prolog
(programmation logique), Scheme (programmation fonctionnelle pure), Modula,
C++, Ada, Turbo Pascal, Common Lisp, Eiffel (programmation par contrats)
- années 80 : ML, CAML (langages fonctionnels)
- années 90 : Perl, Python, Ruby (languages de scripting multi-paradigmes)
Haskell (fonctionnel pur), Lua, Delphi, Java (orienté objet, machine
virtuelle), PHP (impératif, dédié au web), Erlang (fonctionnel+
programmation concurrente), javascript (orienté web, objets par
prototypage), OCaml (multi-paradigme, fortement typé, orienté sécurité,
programmation générique, fonctionnelle et objets, modulaire et fonctorielle)
- 2009 : go (google, compilé, typage statique, objets par prototypage,
prgrammation concurrente), Rust (fondation mozilla, multiparadigme, programmation concurrente)
Les langages actuellement les plus utilisés dans le monde de l'entreprise sont :
- javascript/NodeJS (70% du code dans le dépôt github) mais victime de son
succès (chaos complet des librairies)
- le go est de plus en plus utilisé, c'est **le** langage qui monte
actuellement
- Python, Ruby, lua, autres langages de scripting (de plus en plus utilisés)
- PHP, Java (stagnants)
- C, C++ (de moins en moins utilisés)
Approche par typologie des langages
-----------------------------------
- **A0 (1954)** : possibilité de découpage de programmes en
sous-programmes ;
- **ALGOL (1958)** : concept de bloc de code (pas forcément nommé) et d'imbrication
de blocs de code ;
- **C (1971)** : syntaxe claire et simple, programme fortement structuré ;
- **C (1980)** : le **code objet**, qui consiste à essayer de faire fonctionner
un seul jeu d'instructions sur des machines différentes. Avant, le code
d'assemblage dépendait du processeur, donc il n'y avait pas un seul et unique
jeu d'instructions ;
- **1980** : déploiement et succès des langages à objets ;
- **1983** : turbo pascal (Borland) qui fut le tournant du C,
propose un IDE (Environnement de Développement Intégré).
aujourd'hui le turbo pascal a pratiquement disparu mais pas totalement,
il est soutenu par une communauté open source autour de **Lazarus** ;
- **depuis les années 90** : deux grands groupes de langages. Les langages à
objets, et les langages fonctionnels. Les deux mondes s'interpénètrent (les
avancées actuelles du web, les microservices (Erlang, Haskell),
viennent du monde fonctionnel, le NoSQL, etc).
Les grandes avancées architecturales (système d'exploitation, linux, etc...)
viennent du monde de l'impératif.
Approches par modèles de programmation
--------------------------------------
- **le mécanisme d'exceptions** : il est possible de rompre l'exécution normale d'un
programme à un endroit et de la reprendre à un autre endroit du programme prévu à
cet effet. Ce mécanisme permet de gérer les situations exceptionnelles.
- **le paradigme impératif** : les entrées-sorties, les modifications physiques de
valeurs et les structures de contrôle itératives sont possibles.
- **le paradigme fonctionnel** : manipule les fonctions comme étant des valeurs du
langage. Celles-ci peuvent être utilisées en tant que paramètres d'autres fonctions
ou être retournées comme résultat d'un appel de fonction.
- **le paradigme objet** : La représentation du programme colle à la réalité en
reproduisant des entités relativement proches des objets réel. Attention, le piège
est de croire qu'il s'agit *du* paradigme universel puisqu'il reproduit en miroir le
réel. **C'est en fait un processus d'abstraction comme un autre**.
Sûreté du langage, typage
~~~~~~~~~~~~~~~~~~~~~~~~~
Tri par ordre de sûreté croissant :
0. typage très faible (presque inexistant aujourd'hui) : 42 == "42" == 42.0...
1. typage dynamique faible : (javascript) (possibilité de changer le prototype
d'un objet pendant l'éxécution du programme, c'est la fête on peut faire
n'importe quoi)
2. typage dynamique fort inféré par le comportement (behavior, duck typing)
(python, ruby, PHP) Le contenu de la variable détermine le choix du typage
`var = 0 -> type int`
3. typage statique déclaré fort (Java)
`int var = 0 ;` (pas mal mais super lourd, pas **agile** du tout)
4. langages à types statiques muni d'un moteur d'inférence de types (Ocaml)
sûreté d'exécution, agilité, sécurité.
La syntaxe, la lisibilité
~~~~~~~~~~~~~~~~~~~~~~~~~
Importance de la lisibilité (notamment par rapport aux méthodes agiles).
- courte (python)
- verbeuse (C)
- l'importance des mots clef du langage
- délimiteur de phrase, de blocs (parenthèses, accolades, tabulations, blocs...)
Langages compilés ou interprétés ?
-----------------------------------
.. glossary::
langage compilé
une première passe est faite, des validations son effectuées **avant**
la génération du code objet, cette phase est faite par le compilateur.
compilateur
programme qui transforme un langage de haut niveau en un langage de base
niveau
- phase danalyse syntaxique (source -> syntaxe abstraite)
- phase de synthèse (syntaxe abstraite -> code objet)
scripting (langage de scripting)
langage interprèté
générique (langage)
Langage à usage générique, qui peut être utilisé dans n'importe quel
domaine (par opposition au DSL)
domain specific
Domain Specific Language, langage destiné à être utilisé dans un
domaine prédéfini.
paradigmes
représentation d'une vision particulière à partir d'un modèle théorique
impératif
l'algorithme ressemble à une recette de cuisine,
c'est-à-dire à une succession d'instructions à exécuter
les unes à la suite des autres
fonctionnel
l'algorithme ne dépend plus de l'ordre d'exécution d'instructions
pas de mélange entre les données et les traitements
objets (programmation)
le monde est découpé en catégories
qui permettent de créer des objets
**développement par composants**
les objets sont organisés entre eux par composants suivant des designs patterns,
(patrons de conception)
garbage collector (ramasse miettes)
la gestion automatique de la mémoire apparaît en 1989
machine virtuelle
portabilité du code (mais diminution en optimisation et performances)
JIT (just in time compiler)
code objet, programmes fonctionnant autour de machines virtuelles
- **le typage statique** : la vérification de la compatibilité entre les types des
paramètres formels et des paramètres d'appel est effectuée au moment de la
compilation du programme. Dès lors, il n'est pas nécessaire de faire ces
vérifications durant l'exécution du programme ce qui accroît son efficacité. En
outre, la vérification de type permet d'éliminer la plupart des erreurs introduites
par maladresse ou étourderie et contribue à la sûreté de l'exécution.
- **le typage dynamique** : la vérification de la compatibilité entre les types des
paramètres formels et des paramètres d'appel est effectuée au moment de l'exécution
ou de l'appel à certaines parties de codes du programme.
- **le polymorphisme paramétrique** : une fonction ou un objet qui n'explore pas la
totalité de la structure d'un de ses arguments accepte que celui-ci ait un type non
entièrement déterminé. Ce paramètre est alors dit polymorphe. Cette particularité
permet de développer un code générique utilisable pour des structures de données
différentes tant que la représentation exacte de cette structure n'a pas besoin
d'être connue par le code en question. L'algorithme de typage est à même de faire
cette distinction.
- **l'inférence de types** : le programmeur n'a besoin de donner aucune information
de type à l'intérieur de son programme. Le langage se charge seul de déduire du code
le type le plus général des expressions et des déclarations qui y figurent. Cette
inférence est effectuée conjointement à la vérification, lors de la compilation du
programme.
Les grands paradigmes de programmation
---------------------------------------
Le paradigme des objets
~~~~~~~~~~~~~~~~~~~~~~~
- 1962 (SIMULA) : premières notions de classes ;
Puis, une dizaine d'années plus tard :
- C++ : intégration des classes pour le C ;
- turbo pascal : intégration des classes pour le pascal ;
Tous les langages actuels ont intégré des traits objets mais de manière très
différentes :
- perl (1987)
- python (1991)
- Ruby (1993)
- L'implémentation des objets en python est très proche des notions initiales de
classes issues du Smaltalk et présente une tentative très intéressante
d'unification des objets et des types depuis python 2.2 ;
- Java (1995) : très grosse réussite industrielle en surfant sur la vague de la
programmation objet, et des machines virtuelles, mais en fait et avec le recul,
doté d'un support objet lourd et alambiqué.
Le monde Java est lourd, avec des outils consommant beaucoup de mémoire et
qui ne satisfont pas à la règle du KISS (Keep It Simple, Stupid) ;
Il n'y a pas **une** POO (Programmation Objet), il y a des POO.
Les implémentations objets dans les langages sont riches et variées :
- objets obligatoirement construits pas des classes (Java, C++, ...)
- objets sans définition de classes (javascript, Ocaml, go, rust)
- langages à attributs (python)
- langages ou le type des objets est défini par leur classe (python, ruby)
- langages ou le type des objets est différent du type de leur classe (Ocaml)
- objets sans classes mais construits par des prototypes (javascript)
- construction d'objets possibles objets sans classe du tout (Ocaml)
- encapsulation des attributs des objets (Java, Ocaml, C++, PHP)
- pas d'encapsulation des attributs (python, ruby, javascript...)
Le paradigme impératif
~~~~~~~~~~~~~~~~~~~~~~
Un programme est une suite d'états de la mémoire de l'ordinateur,
c'est la suite logique des machines de Turing.
La plupart des programmeur aujourd'hui raisonnent suivant ce paradigme,
et ont une très faible visibilité par rapport aux autres paradigmes existants.
Seuls les programmeurs cultivés sont aujourd'hui capable de raisonner
suivant différents paradigmes, ce sont des programmeurs chevronnés et
cultivés.
Le paradigme fonctionnel
~~~~~~~~~~~~~~~~~~~~~~~~
La notion de fonction que possède sous une forme ou une autre la plupart des
langages est empruntée aux mathématiques et non à l'électronique. D'une manière
générale, les langages substituent des modèles formels aux conceptions purement
calculatoires. Ils y gagnent en expressivité. Certains langages fondent leur
paradigme de programmation sur l'abstraction entrée-traitement-sortie, donc sur le
**mathème fonctionnel** et pas sur la boite noire électronique. La fonction
mathématique apporte un niveau opératoire dans le traitement de l'information.
Approche par fonctionnalités
----------------------------
Plusieurs domaines de l'informatique on proposé/imposé des méthodologies,
des manières de faire. Ces modèles de programmation on fortement influencé
en retour les langages. On reconnaît aujourd'hui :
- Le modèle client-serveur
- Le modèle de programmation concurrente (exécution de processus légers, threads) :
- Le modèle de développement d'une application de bureau (MVC, ergonomie d'interface)
- Le modèle de développement web (communiquer sur le réseau Internet, API
REST, microservices...)
- Le modèle de programmation système et réseau
- le modèle **Dev Ops** et les méthodes de développement virtualisés
- les langages présentant des **fonctionnalités agiles**
Conclusion
-----------
Les langages de haut niveau sont caractérisés par
des concepts tels que :
- déclaration de valeurs, types, expressions, portée
- expressions, variables, instructions, structures de contrôle
- fonctions, procédures, fermetures
- encapsulation, modules, objets
=========== ============
Paradigmes Concepts
=========== ============
impératif variables, procédures, modules
objets classes, méthodes, héritage, surcharge
fonctionnel fonctions, fermetures, modules
logique prédicats, modules
concurrent tâche/processus, communication
=========== ============

View File

@ -0,0 +1,52 @@
Introduction
~~~~~~~~~~~~
| "**Que nul n'entre ici s'il n'est géomètre**"
| Maxime apposée au porche d'entrée de l'École de Platon
- L'accent est mis sur l'approche **algorithmique scientifique**, dite algorithmique
algébrique. L'algorithmique est un sous-domaine de l'algèbre et des
approches modulaires (arithmétique modulaire...)
- Le point de vue mathématique étant assez exigeant, **aucun formalisme fort** de
l'algorithmique mathématique ne sera présenté. Aucun symbole mathématique donc, et
seulement du pseudo-code.
L'approche mathématique forte utilisant le formalisme mathématique de
l'algorithmique algébrique est en général enseignée en France uniquement aux cours
des grandes écoles.
- L'algorithmique présentée ici est donc délibérément pseudo-scientifique mais en revanche
ouverte au **multi-paradigme**. En général l'évocation d'un algorithme en pseudo code est toujours
réducteur car limité au style de programmation le plus à la mode actuellement, c'est-à-dire le
**style impératif**. Nous présenterons un éventail des plus grands paradigmes de programmation
existants. Nous nous limiterons à la **programmation impérative, fonctionnelle, modulaire,
générique et objet**. Nous envisagerons les structures de données et les structures de contrôle
spécifiques à chacun des styles évoqués.
- Et parce qu'un honnête programmeur doit avoir une vue d'ensemble de **l'état de son art**,
nous évoquerons un panorama des différents langages existants -- historiques et contemporains --
en les comparants les uns aux autres.
- Durant tout le cours, nous souhaitons proposer une pédagogie par l'exemple, et nous
limiterons l'exposé à deux langages d'implémentation des algorithmes : le **Python** pour la programmation
impérative modulaire et objet, et le **OCaml**, car nous évoquerons aussi certains points
de programmation fonctionnelle et modulaire, polymorphe et teintée de généricité.
Intérêt
-------
| "**Il ne suffit pas d'avoir les mains propres, il faut avoir l'esprit pur.**"
| Thalès de Milet ; Sentences - VIe s. av. J.-C.
L'algorithmique en tant que rapport à la vérité et à la pensée juste et vraie,
en tant qu'art de découper un problème complexe en tâches élémentaires,
en tant qu'énoncés de compréhension et de sémantique,
est la seule chose vraiment profonde dans l'informatique. Le reste n'est que 0 ou 1.
Cette notion d'algorithme est profondément enracinée dans le désir humain de
transmettre des méthodes pour comprendre des problématiques,
qu'il s'agisse de processus scientifiques ou mathématiques, de secrets,
de philosophie ou de divination au sens des anciens Grecs.
De règles linguistiques, aussi, chez les Romains.

View File

@ -0,0 +1,477 @@
Définition d'un programme
==========================
Qu'est-ce qu'un programme ?
----------------------------
- Un **programme** est une suite de **phrases** ;
- Une **phrase** est une **déclaration** ou une **expression** (*statement* en anglais) ;
Production d'un programme :
1. on écrit le code source du programme ;
2. on demande au compilateur de le traduire en code machine : c'est la compilation du programme ;
3. on demande à la machine d'effectuer le code machine : c'est l'exécution du programme.
.. important::
L'introduction à la compilation et les différentes phases de la compilation
d'un programme sont des sujets qui ne seront pas traités dans ce cours.
Dans un programme de base, il y a deux fichiers :
1. un fichier contenant le code : c'est le source du programme.
2. un fichier contenant le code machine : c'est l'exécutable.
Que peut faire un programme lorsqu'il est exécuté ?
Le programme doit communiquer. S'il reste isolé, il ne pourra pas
produire quoi que ce soit. Voici les trois moyens de communication qu'a un
programme :
1. communiquer avec l'utilisateur,
2. communiquer avec des fichiers,
3. communiquer avec d'autres programmes.
Les expressions
----------------
expression
Une expression est une valeur caculée du langage, une opération arithmétique
qui retourne une valeur (entier, texte, valeur logique...).
C'est donc une suite sémantiquement correcte de **valeurs de base** et **d'opérateurs**
Par exemple, la ligne suivante est une expression effectuant une addition::
5 + 6
Expressions à partir de types de base
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Autres exemples d'expressions :
- 5 est une expression de type int
- 4.5 est une expression de type float
- 'c' est une expression de type char
- true est une expression de type bool
- print ('c') est une expression de type None
- raw_input est une expression de type string
Les expressions se complexifient avec la complexification des données et des traitements,
mais le principe de l'expressivité d'un langage reste le même.
.. ifconfig:: exercice
**Exercice** :
Le parenthésage et les opérateurs booléens::
Variables A, B, C, D, E en Booléen
Variable X en Entier
Début
Lire X
A <- X > 12
B <- X > 2
C <- X < 6
D <- (A ET B) OU C
E <- A ET (B OU C)
Ecrire D, E
Fin
**Que valent D et E si X = 3 ?**
.. ifconfig:: correction
**Correction** : D sera VRAI alors que E sera FAUX
Les déclarations
-----------------
Un autre exemple d'expression :
.. raw:: latex
\begin{algorithm}
\caption{Exemple d'expression}
\begin{algorithmic}[1]
\BState \emph{sortie}: $l$ \Comment{C'est l'expression calculée renvoyée}
\ForAll {$v \in V(G)$}
\State $l(v) \leftarrow \infty$
\EndFor
\State $l(u) \leftarrow 0$
\Repeat
\For {$i \leftarrow 1, n$}
\State $min \leftarrow l(v_i)$
\For {$j \leftarrow 1, n$}
\If {$min > e(v_i, v_j) + l(v_j)$}
\State $min \leftarrow e(v_i, v_j) + l(v_j)$
\State $p(i) \leftarrow v_j$
\EndIf
\EndFor
\State $l(i) \leftarrow min$
\EndFor
\State $changed \leftarrow l \not= l$
\State $l \leftarrow l$
\Until{$\neg changed$}
\end{algorithmic}
\end{algorithm}
Exemple de déclarations :
- `a = 1`
- `b = 'c'`
.. important:: Le signe égal est utilisé de deux manières
- lors d'une déclaration d'une expression
- lorsque deux expressions sont équivalentes
Suivant les langages, il y a deux symboles différents, ou alors
ils sont identiques.
Il s'agit de **renseigner** une valeur dans une expression nommée
- en javascript :
.. code-block:: javascript
var b = "blabla" ;
- en python :
.. code-block:: python
b = "blabla"
- en java :
.. code-block:: java
String b = "A";
- en OCaml :
.. code-block:: ocaml
let a = 1
Grâce au mécanisme d'inférence de type dans OCaml, le mot-clef **let**
signifie ici véritablement l'instanciation d'une valeur au sens
mathématique du terme : soit `a` l'entier tel que a soit égal à 1...
En OCaml comme dans tous les langages fonctionnels, tout ce que nous avons l'habitude
d'appeler des "variables" à propos des affectations, sont en fait des **constantes**
au sens du paradigme impératif de la programmation.
.. important::
Par voie de conséquence, le symbole ``=`` est utilisé à la fois pour la définition des objets et pour le test d'égalité.
Pour les autres langages, on utilise `==` ou bien `===` (javascript) car
le `=` est sémantiquement déjà utilisé...
Toutes ces notation, apparemment anodines, correspondent donc à des paradigmes de programmation
Lorsqu'on ne déclare pas les types des symboles déclarés, c'est que soit
- le typage est faible
- le typage est dynamique (calcul du type en fonction du contenu de la
variable)
- le typage est statique et fort mais ça ne se voit pas
(var le système les calcule automatiquement par inférence de type)
Assigner, allouer, affecter une chose à quelqu'un ou à une autre chose.
Exemples dans la langue française :
- Le traitement que le budget **alloue** à ces fonctionnaires.
- Un système d'exploitation multitâche alloue le travail du processeur aux processus en attente, pour un bref laps de temps, à leur tour.
.. glossary::
affectation
Une affectation, aussi appelée assignation par anglicisme, est une structure qui permet d'attribuer une valeur à une variable.
Il s'agit d'une structure particulièrement courante en programmation impérative, et dispose souvent pour cette raison d'une notation courte et infixée,
comme ``x = expr`` ou ``x := expr`` ou encore `x <- expr`.
Dans certains langages, le symbole est considéré comme un opérateur d'affectation,
et la structure entière peut alors être utilisée comme une expression.
D'autres langages considèrent une affectation comme une instruction et ne permettent pas cet usage.
Voir aussi :
- Les déclarations de types primitifs et conversions de type
- Les types de base::
Octets (8 bits) byte
Entiers courts (16 bits) short
Entiers (32 bits) int
Entiers longs (64 bits) long
Réels (32 bits) float
Réels longs (64 bits) double
Caractères (16 bits) char
Booléens boolean
- Déclarations par lots::
x1 = e1, x2 = e2, ... xn = en;
Exercices : algorithmes sur les affectations
.. ifconfig:: exercice
**Exercice** : Calculs d'affectation::
Variables A, B, C en Entier
Début
A <- 3
B <- 10
C <- A + B
B <- A + B
A <- C
Fin
.. ifconfig:: correction
**Correction**::
Après La valeur des variables est :
A <- 5 A = 5 B = ?
B <- 2 A = 5 B = 2
A <- B A = 2 B = 2
B <- A A = 2 B = 2
.. ifconfig:: exercice
**Exercice** : Calculs d'affectation
Quelles seront les valeurs des variables A et B après exécution des instructions suivantes ?
::
Variables A, B en Entier
Début
A <- 5
B <- 2
A <- B
B <- A
Fin
.. ifconfig:: correction
**Correction**::
Après La valeur des variables est :
A <- 5 A = 5 B = ?
B <- 2 A = 5 B = 2
A <- B A = 2 B = 2
B <- A A = 2 B = 2
.. ifconfig:: exercice
**Exercice** : écrire un algorithme permettant déchanger les valeurs
de deux variables A et B, et ce quel que soit leur contenu préalable.
.. ifconfig:: correction
**Correction**::
Début
A <- n
B <- p
C <- A
A <- B
B <- C
Fin
Il faut passer par une variable dite temporaire (la variable C)
.. ifconfig:: exercice
**Exercice** :
Que produit lalgorithme suivant ?
::
Variables A, B, C de type entier
Début
A <- 423
B <- 12
C <- A + B
Fin
.. ifconfig:: correction
**Correction** : dans un prompt python
.. code-block:: python
>>> a = 423
>>> b = 12
>>> c = a + b
>>> c
435
.. ifconfig:: exercice
**Exercice** :
Que produit lalgorithme suivant ?
::
Variables A, B, C de type texte
Début
A <- "423"
B <- "12"
C <- A + B
Fin
.. ifconfig:: correction
**Correction** : dans un prompt python
.. code-block:: python
>>> a = '423'
>>> b = '12'
>>> c = a + b
>>> c
'42312'
Interaction avec l'utilisateur
------------------------------
Il est possible de communiquer de la manière suivante avec un programme :
- lire et écrire sur l'entrée/sortie standard
- lire et écrire dans un fichier
- afficher (du texte, un nombre...)
- lire (du texte, un nombre...)
- interagir avec les prompts
.. code-block:: ocaml
let x = read_int () in
let signe =
if x >= 0
then " positif "
else " négatif " in
print_string signe
.. ifconfig:: exercice
**Exercice** : écrire un algorithme qui demande le prénom d'une personne
et renvoie "bonjour, je m'appelle <Prénom>"
.. ifconfig:: correction
**Correction** : (implémentation en python)
.. code-block:: python
# coding: utf-8
prenom = raw_input("quel est ton prénom ? \n")
print("bonjour, je m'appelle " + prenom.capitalize())
La REPL (boucle d'interaction)
-------------------------------
.. glossary::
REPL
Read Eval Print Loop : outil principal de communication avec un programme
ou avec un système. Exemples : la console python, le prompt OCaml.
interface
outil de communication avec un programme.
- interface texte
- interface graphique
**Exemples de REPL**
Le prompt python::
Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> dir()
['__builtins__', '__doc__', '__name__', readline', 'rlcompleter']
>>>
Le prompt ipython::
Python 2.7.12 (default, Nov 19 2016, 06:48:10)
Type "copyright", "credits" or "license" for more information.
IPython 2.4.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]:
Le prompt OCaml (utop)::
Type #utop_help for help about using utop.
─( 09:21:24 )─< command 0 >──
utop #
# let x = 1 in x + 2;;
- : int = 3
# let y = 1 + 2;;
val y : int = 3
# y * y;;
- : int = 9
Construire une boucle d'interaction avec l'utilisateur en python::
#!/usr/bin/env python3
error = True
while error:
try:
entier = int(input('donnez un entier : '))
error = False
except:
print('une valeur entiere est attendue')
print(entier)
Lire et écrire dans un fichier
------------------------------
Les descripteurs de fichiers (file handle)
Exemple en python
.. code-block:: python
>>> fh = file("test.txt", "w")
>>> fh.write("un contenu exemple")
>>> fh.close()
>>>
.. code-block:: python
>>> fh.read()
'un contenu exemple'
>>> fh.close()
>>>
Linéarisation (serialisation) de données par exemple en json
.. code-block:: python
import json
data = dict(a='essai', b='essai2', c=range(3))
with open('data.txt', 'w') as outfile:
json.dump(data, outfile)